qse/ase/test/awk/lisp/awklisp
2008-01-01 07:02:50 +00:00

509 lines
15 KiB
Plaintext

#
# $Id$
#
# This program is a modified version of awklisp originally written
# by Darius Bacon. The only modification is to append a semicolon
# onto the end of each statement to cater for the semicolon requirement
# of ASEAWK.
#
# --- Representation of Lisp data
BEGIN {
a_number = 0;
pair_ptr = a_pair = 1;
symbol_ptr = a_symbol = 2;
type_name[a_number] = "number";
type_name[a_pair] = "pair";
type_name[a_symbol] = "symbol";
}
function is(type, expr)
{
if (expr % 4 != type)
error("Expected a " type_name[type] ", not a " type_name[expr % 4]) ;
return expr;
}
function is_number(expr) { return expr % 4 == 0; }
function is_pair(expr) { return expr % 4 == 1; }
function is_symbol(expr) { return expr % 4 == 2; }
function is_atom(expr) { return expr % 4 != 1; }
function make_number(n) { return n * 4; }
function numeric_value(expr)
{
if (expr % 4 != 0) error("Not a number");
return expr / 4;
}
# Return the symbol :string names.
function string_to_symbol(string)
{
if (string in intern)
return intern[string];
symbol_ptr += 4;
intern[string] = symbol_ptr;
printname[symbol_ptr] = string;
return symbol_ptr;
}
# Define a primitive procedure, with :nparams parameters,
# bound to the symbol named :name.
function def_prim(name, nparams, sym)
{
sym = string_to_symbol(name);
value[sym] = string_to_symbol(sprintf("#<Primitive %s>", name));
if (nparams != "")
num_params[value[sym]] = nparams;
return value[sym];
}
# --- Garbage collection
# Make a new pair.
function cons(the_car, the_cdr)
{
while (pair_ptr in marks) {
delete marks[pair_ptr];
pair_ptr += 4;
}
if (pair_ptr == pair_limit)
gc(the_car, the_cdr);
car[pair_ptr] = the_car;
cdr[pair_ptr] = the_cdr;
pair_ptr += 4;
return pair_ptr - 4;
}
function protect(object) { protected[++protected_ptr] = object; }
function unprotect() { --protected_ptr; }
function mark(object)
{
while (is_pair(object) && !(object in marks)) { #** speed
marks[object] = 1;
mark(car[object]);
object = cdr[object];
}
}
function gc(the_car, the_cdr, p, i)
{
if (loud_gc)
printf("\nGC...") >"/dev/stderr";
mark(the_car); mark(the_cdr);
for (p in protected)
mark(protected[p]);
for (p in stack)
mark(stack[p]);
for (p in value)
mark(value[p]);
for (p in property) {
i = index(SUBSEP, p);
mark(substr(p, 1, i-1));
mark(substr(p, i+1));
mark(property[p]);
}
pair_ptr = a_pair;
while (pair_ptr in marks) {
delete marks[pair_ptr];
pair_ptr += 4;
}
if (pair_ptr == pair_limit) {
if (loud_gc);
printf("Expanding heap...") >"/dev/stderr";
pair_limit += 4 * heap_increment;
}
}
# --- Set up
BEGIN {
srand();
frame_ptr = stack_ptr = 0;
if (heap_increment == "") heap_increment = 1500;
pair_limit = a_pair + 4 * heap_increment;
NIL = string_to_symbol("nil");
T = string_to_symbol("t");
value[NIL] = NIL;
value[T] = T;
car[NIL] = cdr[NIL] = NIL; # this is convenient in a couple places...
THE_EOF_OBJECT = string_to_symbol("#eof");
value[string_to_symbol("the-eof-object")] = THE_EOF_OBJECT;
eof = "(eof)";
QUOTE = string_to_symbol("quote"); is_special[QUOTE] = 1;
LAMBDA = string_to_symbol("lambda"); is_special[LAMBDA] = 1;
IF = string_to_symbol("if"); is_special[IF] = 1;
SETQ = string_to_symbol("set!"); is_special[SETQ] = 1;
DEFINE = string_to_symbol("define"); is_special[DEFINE] = 1;
PROGN = string_to_symbol("begin"); is_special[PROGN] = 1;
WHILE = string_to_symbol("while"); is_special[WHILE] = 1;
EQ = def_prim("eq?", 2);
NULL = def_prim("null?", 1);
CAR = def_prim("car", 1);
CDR = def_prim("cdr", 1);
CADR = def_prim("cadr", 1);
CDDR = def_prim("cddr", 1);
CONS = def_prim("cons", 2);
LIST = def_prim("list");
EVAL = def_prim("eval", 1);
APPLY = def_prim("apply", 2);
READ = def_prim("read", 0);
WRITE = def_prim("write", 1);
NEWLINE = def_prim("newline", 0);
ADD = def_prim("+", 2);
SUB = def_prim("-", 2);
MUL = def_prim("*", 2);
DIV = def_prim("quotient", 2);
MOD = def_prim("remainder", 2);
LT = def_prim("<", 2);
GET = def_prim("get", 2);
PUT = def_prim("put", 3);
ATOMP = def_prim("atom?", 1);
PAIRP = def_prim("pair?", 1);
SYMBOLP = def_prim("symbol?", 1);
NUMBERP = def_prim("number?", 1);
SETCAR = def_prim("set-car!", 2);
SETCDR = def_prim("set-cdr!", 2);
NREV = def_prim("reverse!", 1);
GENSYM = def_prim("gensym", 0);
RANDOM = def_prim("random", 1);
ERROR = def_prim("error");
DRIVER = string_to_symbol("top-level-driver");
}
# --- The interpreter
BEGIN {
for (;;) {
if (DRIVER in value && value[DRIVER] != NIL)
apply(value[DRIVER]);
else {
expr = read();
if (expr == THE_EOF_OBJECT)
break;
protect(expr);
print_expr(eval(expr));
unprotect();
}
}
if (profiling)
for (proc in call_count) {
printf("%5d ", call_count[proc]);
print_expr(proc);
}
}
# All the interpretation routines have the precondition that their
# arguments are protected from garbage collection.
function eval(expr, old_frame_ptr)
{
if (is_atom(expr)) #** speed
if (is_symbol(expr)) {
if (!(expr in value)) error("Unbound variable: " printname[expr]);
return value[expr];
} else
return expr;
op = car[expr]; # op is global to save awk stack space
if (!(op in is_special)) {
old_frame_ptr = frame_ptr;
frame_ptr = stack_ptr;
eval_rands(cdr[expr]);
protect(proc = eval(car[expr]));
result = apply(proc);
unprotect();
stack_ptr = frame_ptr;
frame_ptr = old_frame_ptr;
return result;
}
if (op == QUOTE) return car[cdr[expr]];
if (op == LAMBDA) return expr;
if (op == IF) return eval(car[cdr[expr]]) != NIL
? eval(car[cdr[cdr[expr]]])
: eval(car[cdr[cdr[cdr[expr]]]]);
if (op == PROGN) return progn(cdr[expr]);
if (op == SETQ) {
if (!(car[cdr[expr]] in value))
error("Unbound variable: " printname[car[cdr[expr]]]);
return value[car[cdr[expr]]] = eval(car[cdr[cdr[expr]]]);
}
if (op == WHILE) {
while (eval(car[cdr[expr]]) != NIL)
progn(cdr[cdr[expr]]);
return NIL;
}
if (op == DEFINE) {
value[car[cdr[expr]]] = eval(car[cdr[cdr[expr]]]);
return car[cdr[expr]];
}
error("BUG: Unknown special form");
}
# Evaluate a sequence of expressions, returning the last value.
function progn(exprs)
{
for (; cdr[exprs] != NIL; exprs = cdr[exprs])
eval(car[exprs]);
return eval(car[exprs]);
}
# Evaluate the operands of a procedure, pushing the results on the stack.
function eval_rands(rands)
{
for (; rands != NIL; rands = cdr[rands])
stack[stack_ptr++] = eval(car[rands]);
}
# Call the procedure :proc, with args stack[frame_ptr]..stack[stack_ptr-1]
# (in that order).
function apply(proc)
{
if (profiling)
++call_count[proc];
if (car[proc] == LAMBDA) {
extend_env(car[cdr[proc]]);
result = progn(cdr[cdr[proc]]); # result is global to save stack space
unwind_env(car[cdr[proc]]);
return result;
}
if (proc in num_params && num_params[proc] != stack_ptr - frame_ptr)
error("Wrong number of arguments to " printname[cdr[proc]]);
if (proc == CAR) return car[is(a_pair, stack[frame_ptr])];
if (proc == CDR) return cdr[is(a_pair, stack[frame_ptr])];
if (proc == CONS) return cons(stack[frame_ptr], stack[frame_ptr+1]);
if (proc == NULL) return stack[frame_ptr] == NIL ? T : NIL;
if (proc == EQ) return stack[frame_ptr] == stack[frame_ptr+1] ? T : NIL;
if (proc == ATOMP) return is_atom(stack[frame_ptr]) ? T : NIL;
if (proc == ADD) return is(a_number, stack[frame_ptr]) + is(a_number, stack[frame_ptr+1]);
if (proc == SUB) return is(a_number, stack[frame_ptr]) - is(a_number, stack[frame_ptr+1]);
if (proc == MUL) return make_number(numeric_value(stack[frame_ptr]) * numeric_value(stack[frame_ptr+1]));
if (proc == DIV) return make_number(int(numeric_value(stack[frame_ptr]) / numeric_value(stack[frame_ptr+1])));
if (proc == MOD) return make_number(numeric_value(stack[frame_ptr]) % numeric_value(stack[frame_ptr+1]));
if (proc == LT) return (stack[frame_ptr] + 0 < stack[frame_ptr+1] + 0) ? T : NIL;
if (proc == GET) return (stack[frame_ptr], stack[frame_ptr+1]) in property ? property[stack[frame_ptr], stack[frame_ptr+1]] : NIL;
if (proc == PUT) return property[stack[frame_ptr], stack[frame_ptr+1]] = stack[frame_ptr+2];
if (proc == CADR) return car[is(a_pair, cdr[is(a_pair, stack[frame_ptr])])];
if (proc == CDDR) return cdr[is(a_pair, cdr[is(a_pair, stack[frame_ptr])])];
if (proc == LIST) return listify_args();
if (proc == SYMBOLP)return is_symbol(stack[frame_ptr]) ? T : NIL;
if (proc == PAIRP) return is_pair(stack[frame_ptr]) ? T : NIL;
if (proc == NUMBERP)return is_number(stack[frame_ptr]) ? T : NIL;
if (proc == SETCAR) return car[is(a_pair, stack[frame_ptr])] = stack[frame_ptr+1];
if (proc == SETCDR) return cdr[is(a_pair, stack[frame_ptr])] = stack[frame_ptr+1];
if (proc == APPLY) return do_apply(stack[frame_ptr], stack[frame_ptr+1]);
if (proc == EVAL) return eval(stack[frame_ptr]);
if (proc == NREV) return nreverse(stack[frame_ptr], NIL);
if (proc == WRITE) { write_expr(stack[frame_ptr]); printf(" "); return NIL; }
if (proc == NEWLINE){ printf("\n"); return NIL;}
if (proc == READ) return read();
if (proc == RANDOM) return make_number(int(rand() * numeric_value(stack[frame_ptr])));
if (proc == GENSYM) return string_to_symbol("#G" ++gensym_counter);
if (proc == ERROR) { printf("Error!\n"); print_expr(listify_args()); exit(1); }
error("Unknown procedure type");
}
function do_apply(proc, args, old_frame_ptr)
{
old_frame_ptr = frame_ptr;
frame_ptr = stack_ptr;
for (; is_pair(args); args = cdr[args])
stack[stack_ptr++] = car[args];
if (args != NIL)
error("Bad argument to APPLY: not a proper list");
result = apply(proc);
stack_ptr = frame_ptr;
frame_ptr = old_frame_ptr;
return result;
}
function listify_args( p, result)
{
result = NIL;
for (p = stack_ptr - 1; frame_ptr <= p; --p)
result = cons(stack[p], result);
return result;
}
# --- The environment
# The current environment is represented by the set of values
# value[sym] where sym is a symbol. extend_env(vars) adds a new
# set of bindings for vars, saving the old values; unwind_env(vars)
# restores those old values. The new value for the nth member of
# vars is frame_ptr[n]; coincidentally, that's also where we
# store away the old value, since that stack frame's not needed
# for anything else after the extend_env() call.
function extend_env(vars, p, temp)
{
for (p = frame_ptr; vars != NIL; vars = cdr[vars]) {
if (p == stack_ptr)
error("Too many arguments to procedure");
temp = value[car[vars]];
value[car[vars]] = stack[p];
stack[p] = temp;
++p;
}
if (p != stack_ptr)
error("Not enough arguments to procedure");
}
function unwind_env(vars, p)
{
for (p = frame_ptr; vars != NIL; vars = cdr[vars]) {
if (stack[p] == "")
delete value[car[vars]];
else
value[car[vars]] = stack[p];
++p;
}
}
# --- Output
function print_expr(expr)
{
write_expr(expr);
print "";
}
function write_expr(expr)
{
if (is_atom(expr)) {
if (!is_symbol(expr))
printf("%d", numeric_value(expr));
else {
if (!(expr in printname))
error("BUG: " expr " has no printname");
printf("%s", printname[expr]);
}
} else {
printf("(");
write_expr(car[expr]);
for (expr = cdr[expr]; is_pair(expr); expr = cdr[expr]) {
printf(" ");
write_expr(car[expr]);
}
if (expr != NIL) {
printf(" . ");
write_expr(expr);
}
printf(")");
}
}
# --- Input
function read( committed, result)
{
skip_blanks();
if (token == eof)
if (committed)
error("Unexpected EOF");
else
return THE_EOF_OBJECT;
if (token == "(") { # read a list
advance();
result = NIL;
for (;;) {
skip_blanks();
if (token == ".") {
advance();
after_dot = read(1);
skip_blanks();
if (token != ")")
error("')' expected");
advance();
return nreverse(result, after_dot);
} else if (token == ")") {
advance();
return nreverse(result, NIL);
} else {
protect(result);
result = cons(read(1), result);
unprotect();
}
}
} else if (token == "'") { # a quoted expression
advance();
return cons(QUOTE, cons(read(1), NIL));
} else if (token ~ /^-?[0-9]+$/) { # a number
result = make_number(token);
advance();
return result;
} else { # a symbol
result = string_to_symbol(token);
advance();
return result;
}
}
function skip_blanks()
{
while (token ~ /^[ \t]*$/)
advance();
}
function advance()
{
if (token == eof) return eof;
if (token == "") {
if (getline line <= 0) {
token = eof;
return;
}
}
if (match(line, "^[()'.]") ||
match(line, "^[_A-Za-z0-9=!@$%&*<>?+\\-*/:]+") ||
match(line, "^[ \\t]+")) {
token = substr(line, RSTART, RLENGTH);
line = substr(line, RLENGTH+1);
} else if (line == "" || substr(line, 1, 1) == ";")
token = ""; # this kludge permits interactive use
else
error("Lexical error starting at " line);
}
# --- Miscellany
# Destructively reverse :list and append :reversed_head.
function nreverse(list, reversed_head, tail)
{
while (is_pair(list)) { #** speed?
tail = cdr[list];
cdr[list] = reversed_head;
reversed_head = list;
list = tail;
}
if (list != NIL)
error("Not a proper list - reverse!");
return reversed_head;
}
function error(reason)
{
print "ERROR: " reason >"/dev/stderr";
exit(1);
}