qse/lib/cry/sha2.c

872 lines
24 KiB
C

/*
* $Id$
*
Copyright (c) 2006-2019 Chung, Hyung-Hwan. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
*/
#include <qse/cry/sha2.h>
#include <qse/cmn/hton.h>
#include "../cmn/mem-prv.h"
#define SHA2_UNROLL_TRANSFORM
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define QSE_SHA256_SHORT_BLOCK_LEN (QSE_SHA256_BLOCK_LEN - 8)
#define QSE_SHA384_SHORT_BLOCK_LEN (QSE_SHA384_BLOCK_LEN - 16)
#define QSE_SHA512_SHORT_BLOCK_LEN (QSE_SHA512_BLOCK_LEN - 16)
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (qse_uint64_t)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
#define MEMSET_BZERO(p,l) qse_memset((p), 0, (l))
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
const static qse_uint32_t K256[64] =
{
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
const static qse_uint32_t sha256_initial_hash_value[8] =
{
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static qse_uint64_t K512[80] =
{
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
const static qse_uint64_t sha384_initial_hash_value[8] =
{
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
const static qse_uint64_t sha512_initial_hash_value[8] =
{
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/*** SHA-256: *********************************************************/
void qse_sha256_initialize(qse_sha256_t* ctx)
{
qse_memcpy (ctx->state, sha256_initial_hash_value, QSE_SHA256_DIGEST_LEN);
qse_memset (ctx->buffer, 0, QSE_SHA256_BLOCK_LEN);
ctx->bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#if defined(QSE_ENDIAN_LITTLE)
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
W256[j] = qse_bswap32(*data++); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#else /* QSE_ENDIAN_LITTLE */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif /* QSE_ENDIAN_LITTLE */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
static void SHA256_Transform (qse_sha256_t* ctx, const qse_uint32_t* data)
{
qse_uint32_t a, b, c, d, e, f, g, h, s0, s1;
qse_uint32_t T1, *W256;
int j;
W256 = (qse_uint32_t*)ctx->buffer;
/* Initialize registers with the prev. intermediate value */
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
j = 0;
do
{
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
}
while (j < 16);
/* Now for the remaining rounds to 64: */
do
{
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
}
while (j < 64);
/* Compute the current intermediate hash value */
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
static void SHA256_Transform (qse_sha256_t* ctx, const qse_uint32_t* data)
{
qse_uint32_t a, b, c, d, e, f, g, h, s0, s1;
qse_uint32_t T1, T2, *W256;
int j;
W256 = (qse_uint32_t*)ctx->buffer;
/* Initialize registers with the prev. intermediate value */
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
j = 0;
do
{
#if defined(QSE_ENDIAN_LITTLE)
/* Copy data while converting to host byte order */
W256[j] = qse_bswap32(*data++);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* QSE_ENDIAN_LITTLE */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* QSE_ENDIAN_LITTLE */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 64);
/* Compute the current intermediate hash value */
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void qse_sha256_update (qse_sha256_t* ctx, const qse_uint8_t* data, qse_size_t len)
{
unsigned int freespace, usedspace;
if (len == 0) return;
/* Sanity check: */
QSE_ASSERT (ctx != (qse_sha256_t*)0 && data != (qse_uint8_t*)0);
usedspace = (ctx->bitcount >> 3) % QSE_SHA256_BLOCK_LEN;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = QSE_SHA256_BLOCK_LEN - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
qse_memcpy (&ctx->buffer[usedspace], data, freespace);
ctx->bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Transform(ctx, (qse_uint32_t*)ctx->buffer);
}
else
{
/* The buffer is not yet full */
qse_memcpy (&ctx->buffer[usedspace], data, len);
ctx->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= QSE_SHA256_BLOCK_LEN)
{
/* Process as many complete blocks as we can */
SHA256_Transform(ctx, (qse_uint32_t*)data);
ctx->bitcount += QSE_SHA256_BLOCK_LEN << 3;
len -= QSE_SHA256_BLOCK_LEN;
data += QSE_SHA256_BLOCK_LEN;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
qse_memcpy (ctx->buffer, data, len);
ctx->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
qse_size_t qse_sha256_digest (qse_sha256_t* ctx, qse_uint8_t* digest, qse_size_t size)
{
unsigned int usedspace;
usedspace = (ctx->bitcount >> 3) % QSE_SHA256_BLOCK_LEN;
#if defined(QSE_ENDIAN_LITTLE)
/* Convert FROM host byte order */
ctx->bitcount = qse_bswap64(ctx->bitcount);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
ctx->buffer[usedspace++] = 0x80;
if (usedspace <= QSE_SHA256_SHORT_BLOCK_LEN)
{
/* Set-up for the last transform: */
qse_memset (&ctx->buffer[usedspace], 0, QSE_SHA256_SHORT_BLOCK_LEN - usedspace);
}
else
{
if (usedspace < QSE_SHA256_BLOCK_LEN)
{
qse_memset (&ctx->buffer[usedspace], 0, QSE_SHA256_BLOCK_LEN - usedspace);
}
/* Do second-to-last transform: */
SHA256_Transform(ctx, (qse_uint32_t*)ctx->buffer);
/* And set-up for the last transform: */
qse_memset (ctx->buffer, 0, QSE_SHA256_SHORT_BLOCK_LEN);
}
}
else
{
/* Set-up for the last transform: */
qse_memset (ctx->buffer, 0, QSE_SHA256_SHORT_BLOCK_LEN);
/* Begin padding with a 1 bit: */
*ctx->buffer = 0x80;
}
/* Set the bit count: */
*(qse_uint64_t*)&ctx->buffer[QSE_SHA256_SHORT_BLOCK_LEN] = ctx->bitcount;
/* Final transform: */
SHA256_Transform(ctx, (qse_uint32_t*)ctx->buffer);
if (size > QSE_SHA256_DIGEST_LEN) size = QSE_SHA256_DIGEST_LEN;
#if defined(QSE_ENDIAN_LITTLE)
{
int j;
for (j = 0; j < (QSE_SHA256_DIGEST_LEN / QSE_SIZEOF_UINT32_T); j++)
{
ctx->state[j] = qse_bswap32(ctx->state[j]);
}
}
#endif
qse_memcpy (digest, ctx->state, size);
qse_sha256_initialize (ctx);
return size;
}
/*** SHA-512: *********************************************************/
void qse_sha512_initialize (qse_sha512_t* ctx)
{
qse_memcpy (ctx->state, sha512_initial_hash_value, QSE_SHA512_DIGEST_LEN);
qse_memset (ctx->buffer, 0, QSE_SHA512_BLOCK_LEN);
ctx->bitcount[0] = ctx->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#if defined(QSE_ENDIAN_LITTLE)
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
W512[j] = qse_bswap64(*data++); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
(d) += T1, \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
j++
#else /* QSE_ENDIAN_LITTLE */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif /* QSE_ENDIAN_LITTLE */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
static void SHA512_Transform (qse_sha512_t* ctx, const qse_uint64_t* data)
{
qse_uint64_t a, b, c, d, e, f, g, h, s0, s1;
qse_uint64_t T1, *W512 = (qse_uint64_t*)ctx->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
j = 0;
do
{
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
}
while (j < 16);
/* Now for the remaining rounds up to 79: */
do
{
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
}
while (j < 80);
/* Compute the current intermediate hash value */
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
static void SHA512_Transform(qse_sha512_t* ctx, const qse_uint64_t* data)
{
qse_uint64_t a, b, c, d, e, f, g, h, s0, s1;
qse_uint64_t T1, T2, *W512 = (qse_uint64_t*)ctx->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
j = 0;
do
{
#if defined(QSE_ENDIAN_LITTLE)
/* Convert TO host byte order */
W512[j] = qse_bswap64(*data++);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* QSE_ENDIAN_LITTLE */
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* QSE_ENDIAN_LITTLE */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 80);
/* Compute the current intermediate hash value */
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void qse_sha512_update (qse_sha512_t* ctx, const qse_uint8_t *data, qse_size_t len)
{
unsigned int freespace, usedspace;
if (len == 0) return;
/* Sanity check: */
QSE_ASSERT (ctx != (qse_sha512_t*)0 && data != (qse_uint8_t*)0);
usedspace = (ctx->bitcount[0] >> 3) % QSE_SHA512_BLOCK_LEN;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = QSE_SHA512_BLOCK_LEN - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
qse_memcpy (&ctx->buffer[usedspace], data, freespace);
ADDINC128(ctx->bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Transform(ctx, (qse_uint64_t*)ctx->buffer);
}
else
{
/* The buffer is not yet full */
qse_memcpy (&ctx->buffer[usedspace], data, len);
ADDINC128(ctx->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= QSE_SHA512_BLOCK_LEN)
{
/* Process as many complete blocks as we can */
SHA512_Transform(ctx, (qse_uint64_t*)data);
ADDINC128(ctx->bitcount, QSE_SHA512_BLOCK_LEN << 3);
len -= QSE_SHA512_BLOCK_LEN;
data += QSE_SHA512_BLOCK_LEN;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
qse_memcpy (ctx->buffer, data, len);
ADDINC128(ctx->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
static void SHA512_Last (qse_sha512_t* ctx)
{
unsigned int usedspace;
usedspace = (ctx->bitcount[0] >> 3) % QSE_SHA512_BLOCK_LEN;
#if defined(QSE_ENDIAN_LITTLE)
/* Convert FROM host byte order */
ctx->bitcount[0] = qse_bswap64(ctx->bitcount[0]);
ctx->bitcount[1] = qse_bswap64(ctx->bitcount[1]);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
ctx->buffer[usedspace++] = 0x80;
if (usedspace <= QSE_SHA512_SHORT_BLOCK_LEN)
{
/* Set-up for the last transform: */
qse_memset (&ctx->buffer[usedspace], 0, QSE_SHA512_SHORT_BLOCK_LEN - usedspace);
}
else
{
if (usedspace < QSE_SHA512_BLOCK_LEN)
{
qse_memset (&ctx->buffer[usedspace], 0, QSE_SHA512_BLOCK_LEN - usedspace);
}
/* Do second-to-last transform: */
SHA512_Transform(ctx, (qse_uint64_t*)ctx->buffer);
/* And set-up for the last transform: */
qse_memset (ctx->buffer, 0, QSE_SHA512_BLOCK_LEN - 2);
}
}
else
{
/* Prepare for final transform: */
qse_memset (ctx->buffer, 0, QSE_SHA512_SHORT_BLOCK_LEN);
/* Begin padding with a 1 bit: */
*ctx->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(qse_uint64_t*)&ctx->buffer[QSE_SHA512_SHORT_BLOCK_LEN] = ctx->bitcount[1];
*(qse_uint64_t*)&ctx->buffer[QSE_SHA512_SHORT_BLOCK_LEN+8] = ctx->bitcount[0];
/* Final transform: */
SHA512_Transform(ctx, (qse_uint64_t*)ctx->buffer);
}
qse_size_t qse_sha512_digest (qse_sha512_t* ctx, qse_uint8_t* digest, qse_size_t size)
{
SHA512_Last (ctx);
if (size > QSE_SHA512_DIGEST_LEN) size = QSE_SHA512_DIGEST_LEN;
#if defined(QSE_ENDIAN_LITTLE)
{
int j;
for (j = 0; j < (QSE_SHA512_DIGEST_LEN / QSE_SIZEOF_UINT64_T); j++)
{
ctx->state[j] = qse_bswap64 (ctx->state[j]);
}
}
#endif
qse_memcpy (digest, ctx->state, size);
qse_sha512_initialize (ctx);
return size;
}
/*** SHA-384: *********************************************************/
void qse_sha384_initialize(qse_sha384_t* ctx)
{
qse_memcpy (ctx->state, sha384_initial_hash_value, QSE_SHA512_DIGEST_LEN);
qse_memset (ctx->buffer, 0, QSE_SHA384_BLOCK_LEN);
ctx->bitcount[0] = ctx->bitcount[1] = 0;
}
void qse_sha384_update(qse_sha384_t* ctx, const qse_uint8_t* data, qse_size_t len)
{
qse_sha512_update((qse_sha512_t*)ctx, data, len);
}
qse_size_t qse_sha384_digest (qse_sha384_t* ctx, qse_uint8_t* digest, qse_size_t size)
{
SHA512_Last ((qse_sha512_t*)ctx);
if (size > QSE_SHA384_DIGEST_LEN) size = QSE_SHA384_DIGEST_LEN;
#if defined(QSE_ENDIAN_LITTLE)
{
int j;
for (j = 0; j < (QSE_SHA384_DIGEST_LEN / QSE_SIZEOF_UINT64_T); j++)
{
ctx->state[j] = qse_bswap64(ctx->state[j]);
}
}
#endif
qse_memcpy (digest, ctx->state, size);
qse_sha384_initialize (ctx);
return size;
}