576 lines
11 KiB
C
576 lines
11 KiB
C
/*
|
|
* $Id: misc.c 215 2008-06-19 10:27:37Z baconevi $
|
|
*
|
|
* {License}
|
|
*/
|
|
|
|
#include "lsp_i.h"
|
|
|
|
ase_long_t ase_lsp_strxtolong (
|
|
ase_lsp_t* lsp, const ase_char_t* str, ase_size_t len,
|
|
int base, const ase_char_t** endptr)
|
|
{
|
|
ase_long_t n = 0;
|
|
const ase_char_t* p;
|
|
const ase_char_t* end;
|
|
ase_size_t rem;
|
|
int digit, negative = 0;
|
|
|
|
ASE_ASSERT (base < 37);
|
|
|
|
p = str;
|
|
end = str + len;
|
|
|
|
/* strip off leading spaces */
|
|
/*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/
|
|
|
|
/* check for a sign */
|
|
/*while (*p != ASE_T('\0')) */
|
|
while (p < end)
|
|
{
|
|
if (*p == ASE_T('-'))
|
|
{
|
|
negative = ~negative;
|
|
p++;
|
|
}
|
|
else if (*p == ASE_T('+')) p++;
|
|
else break;
|
|
}
|
|
|
|
/* check for a binary/octal/hexadecimal notation */
|
|
rem = end - p;
|
|
if (base == 0)
|
|
{
|
|
if (rem >= 1 && *p == ASE_T('0'))
|
|
{
|
|
p++;
|
|
|
|
if (rem == 1) base = 8;
|
|
else if (*p == ASE_T('x') || *p == ASE_T('X'))
|
|
{
|
|
p++; base = 16;
|
|
}
|
|
else if (*p == ASE_T('b') || *p == ASE_T('B'))
|
|
{
|
|
p++; base = 2;
|
|
}
|
|
else base = 8;
|
|
}
|
|
else base = 10;
|
|
}
|
|
else if (rem >= 2 && base == 16)
|
|
{
|
|
if (*p == ASE_T('0') &&
|
|
(*(p+1) == ASE_T('x') || *(p+1) == ASE_T('X'))) p += 2;
|
|
}
|
|
else if (rem >= 2 && base == 2)
|
|
{
|
|
if (*p == ASE_T('0') &&
|
|
(*(p+1) == ASE_T('b') || *(p+1) == ASE_T('B'))) p += 2;
|
|
}
|
|
|
|
/* process the digits */
|
|
/*while (*p != ASE_T('\0'))*/
|
|
while (p < end)
|
|
{
|
|
if (*p >= ASE_T('0') && *p <= ASE_T('9'))
|
|
digit = *p - ASE_T('0');
|
|
else if (*p >= ASE_T('A') && *p <= ASE_T('Z'))
|
|
digit = *p - ASE_T('A') + 10;
|
|
else if (*p >= ASE_T('a') && *p <= ASE_T('z'))
|
|
digit = *p - ASE_T('a') + 10;
|
|
else break;
|
|
|
|
if (digit >= base) break;
|
|
n = n * base + digit;
|
|
|
|
p++;
|
|
}
|
|
|
|
if (endptr != ASE_NULL) *endptr = p;
|
|
return (negative)? -n: n;
|
|
}
|
|
|
|
|
|
/*
|
|
* ase_lsp_strtoreal is almost a replica of strtod.
|
|
*
|
|
* strtod.c --
|
|
*
|
|
* Source code for the "strtod" library procedure.
|
|
*
|
|
* Copyright (c) 1988-1993 The Regents of the University of California.
|
|
* Copyright (c) 1994 Sun Microsystems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software and its documentation for any purpose and without
|
|
* fee is hereby granted, provided that the above copyright
|
|
* notice appear in all copies. The University of California
|
|
* makes no representations about the suitability of this
|
|
* software for any purpose. It is provided "as is" without
|
|
* express or implied warranty.
|
|
*/
|
|
|
|
#define MAX_EXPONENT 511
|
|
|
|
ase_real_t ase_lsp_strtoreal (ase_lsp_t* lsp, const ase_char_t* str)
|
|
{
|
|
/*
|
|
* Table giving binary powers of 10. Entry is 10^2^i.
|
|
* Used to convert decimal exponents into floating-point numbers.
|
|
*/
|
|
static ase_real_t powers_of_10[] =
|
|
{
|
|
10., 100., 1.0e4, 1.0e8, 1.0e16,
|
|
1.0e32, 1.0e64, 1.0e128, 1.0e256
|
|
};
|
|
|
|
ase_real_t fraction, dbl_exp, * d;
|
|
const ase_char_t* p;
|
|
ase_cint_t c;
|
|
int exp = 0; /* Esseonent read from "EX" field */
|
|
|
|
/*
|
|
* Esseonent that derives from the fractional part. Under normal
|
|
* circumstatnces, it is the negative of the number of digits in F.
|
|
* However, if I is very long, the last digits of I get dropped
|
|
* (otherwise a long I with a large negative exponent could cause an
|
|
* unnecessary overflow on I alone). In this case, frac_exp is
|
|
* incremented one for each dropped digit.
|
|
*/
|
|
|
|
int frac_exp;
|
|
int mant_size; /* Number of digits in mantissa. */
|
|
int dec_pt; /* Number of mantissa digits BEFORE decimal point */
|
|
const ase_char_t *pexp; /* Temporarily holds location of exponent in string */
|
|
int negative = 0, exp_negative = 0;
|
|
|
|
p = str;
|
|
|
|
/* strip off leading blanks */
|
|
/*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/
|
|
|
|
/* check for a sign */
|
|
while (*p != ASE_T('\0'))
|
|
{
|
|
if (*p == ASE_T('-'))
|
|
{
|
|
negative = ~negative;
|
|
p++;
|
|
}
|
|
else if (*p == ASE_T('+')) p++;
|
|
else break;
|
|
}
|
|
|
|
/* Count the number of digits in the mantissa (including the decimal
|
|
* point), and also locate the decimal point. */
|
|
dec_pt = -1;
|
|
for (mant_size = 0; ; mant_size++)
|
|
{
|
|
c = *p;
|
|
if (!ASE_LSP_ISDIGIT (lsp, c))
|
|
{
|
|
if ((c != ASE_T('.')) || (dec_pt >= 0)) break;
|
|
dec_pt = mant_size;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/*
|
|
* Now suck up the digits in the mantissa. Use two integers to
|
|
* collect 9 digits each (this is faster than using floating-point).
|
|
* If the mantissa has more than 18 digits, ignore the extras, since
|
|
* they can't affect the value anyway.
|
|
*/
|
|
pexp = p;
|
|
p -= mant_size;
|
|
if (dec_pt < 0)
|
|
{
|
|
dec_pt = mant_size;
|
|
}
|
|
else
|
|
{
|
|
mant_size--; /* One of the digits was the point */
|
|
}
|
|
|
|
if (mant_size > 18)
|
|
{
|
|
frac_exp = dec_pt - 18;
|
|
mant_size = 18;
|
|
}
|
|
else
|
|
{
|
|
frac_exp = dec_pt - mant_size;
|
|
}
|
|
|
|
if (mant_size == 0)
|
|
{
|
|
fraction = 0.0;
|
|
/*p = str;*/
|
|
p = pexp;
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
int frac1, frac2;
|
|
frac1 = 0;
|
|
for ( ; mant_size > 9; mant_size--)
|
|
{
|
|
c = *p;
|
|
p++;
|
|
if (c == ASE_T('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac1 = 10 * frac1 + (c - ASE_T('0'));
|
|
}
|
|
frac2 = 0;
|
|
for (; mant_size > 0; mant_size--) {
|
|
c = *p;
|
|
p++;
|
|
if (c == ASE_T('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac2 = 10*frac2 + (c - ASE_T('0'));
|
|
}
|
|
fraction = (1.0e9 * frac1) + frac2;
|
|
}
|
|
|
|
/* Skim off the exponent */
|
|
p = pexp;
|
|
if ((*p == ASE_T('E')) || (*p == ASE_T('e')))
|
|
{
|
|
p++;
|
|
if (*p == ASE_T('-'))
|
|
{
|
|
exp_negative = 1;
|
|
p++;
|
|
}
|
|
else
|
|
{
|
|
if (*p == ASE_T('+')) p++;
|
|
exp_negative = 0;
|
|
}
|
|
if (!ASE_LSP_ISDIGIT (lsp, *p))
|
|
{
|
|
/* p = pexp; */
|
|
/* goto done; */
|
|
goto no_exp;
|
|
}
|
|
while (ASE_LSP_ISDIGIT (lsp, *p))
|
|
{
|
|
exp = exp * 10 + (*p - ASE_T('0'));
|
|
p++;
|
|
}
|
|
}
|
|
|
|
no_exp:
|
|
if (exp_negative) exp = frac_exp - exp;
|
|
else exp = frac_exp + exp;
|
|
|
|
/*
|
|
* Generate a floating-point number that represents the exponent.
|
|
* Do this by processing the exponent one bit at a time to combine
|
|
* many powers of 2 of 10. Then combine the exponent with the
|
|
* fraction.
|
|
*/
|
|
if (exp < 0)
|
|
{
|
|
exp_negative = 1;
|
|
exp = -exp;
|
|
}
|
|
else exp_negative = 0;
|
|
|
|
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
|
|
|
|
dbl_exp = 1.0;
|
|
|
|
for (d = powers_of_10; exp != 0; exp >>= 1, d++)
|
|
{
|
|
if (exp & 01) dbl_exp *= *d;
|
|
}
|
|
|
|
if (exp_negative) fraction /= dbl_exp;
|
|
else fraction *= dbl_exp;
|
|
|
|
done:
|
|
return (negative)? -fraction: fraction;
|
|
}
|
|
|
|
ase_real_t ase_lsp_strxtoreal (
|
|
ase_lsp_t* lsp, const ase_char_t* str, ase_size_t len,
|
|
const ase_char_t** endptr)
|
|
{
|
|
/*
|
|
* Table giving binary powers of 10. Entry is 10^2^i.
|
|
* Used to convert decimal exponents into floating-point numbers.
|
|
*/
|
|
static ase_real_t powers_of_10[] =
|
|
{
|
|
10., 100., 1.0e4, 1.0e8, 1.0e16,
|
|
1.0e32, 1.0e64, 1.0e128, 1.0e256
|
|
};
|
|
|
|
ase_real_t fraction, dbl_exp, * d;
|
|
const ase_char_t* p, * end;
|
|
ase_cint_t c;
|
|
int exp = 0; /* Esseonent read from "EX" field */
|
|
|
|
/*
|
|
* Esseonent that derives from the fractional part. Under normal
|
|
* circumstatnces, it is the negative of the number of digits in F.
|
|
* However, if I is very long, the last digits of I get dropped
|
|
* (otherwise a long I with a large negative exponent could cause an
|
|
* unnecessary overflow on I alone). In this case, frac_exp is
|
|
* incremented one for each dropped digit.
|
|
*/
|
|
|
|
int frac_exp;
|
|
int mant_size; /* Number of digits in mantissa. */
|
|
int dec_pt; /* Number of mantissa digits BEFORE decimal point */
|
|
const ase_char_t *pexp; /* Temporarily holds location of exponent in string */
|
|
int negative = 0, exp_negative = 0;
|
|
|
|
p = str;
|
|
end = str + len;
|
|
|
|
/* Strip off leading blanks and check for a sign */
|
|
/*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/
|
|
|
|
/*while (*p != ASE_T('\0')) */
|
|
while (p < end)
|
|
{
|
|
if (*p == ASE_T('-'))
|
|
{
|
|
negative = ~negative;
|
|
p++;
|
|
}
|
|
else if (*p == ASE_T('+')) p++;
|
|
else break;
|
|
}
|
|
|
|
/* Count the number of digits in the mantissa (including the decimal
|
|
* point), and also locate the decimal point. */
|
|
dec_pt = -1;
|
|
/*for (mant_size = 0; ; mant_size++) */
|
|
for (mant_size = 0; p < end; mant_size++)
|
|
{
|
|
c = *p;
|
|
if (!ASE_LSP_ISDIGIT (lsp, c))
|
|
{
|
|
if (c != ASE_T('.') || dec_pt >= 0) break;
|
|
dec_pt = mant_size;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/*
|
|
* Now suck up the digits in the mantissa. Use two integers to
|
|
* collect 9 digits each (this is faster than using floating-point).
|
|
* If the mantissa has more than 18 digits, ignore the extras, since
|
|
* they can't affect the value anyway.
|
|
*/
|
|
pexp = p;
|
|
p -= mant_size;
|
|
if (dec_pt < 0)
|
|
{
|
|
dec_pt = mant_size;
|
|
}
|
|
else
|
|
{
|
|
mant_size--; /* One of the digits was the point */
|
|
}
|
|
|
|
if (mant_size > 18) /* TODO: is 18 correct for ase_real_t??? */
|
|
{
|
|
frac_exp = dec_pt - 18;
|
|
mant_size = 18;
|
|
}
|
|
else
|
|
{
|
|
frac_exp = dec_pt - mant_size;
|
|
}
|
|
|
|
if (mant_size == 0)
|
|
{
|
|
fraction = 0.0;
|
|
/*p = str;*/
|
|
p = pexp;
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
int frac1, frac2;
|
|
|
|
frac1 = 0;
|
|
for ( ; mant_size > 9; mant_size--)
|
|
{
|
|
c = *p;
|
|
p++;
|
|
if (c == ASE_T('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac1 = 10 * frac1 + (c - ASE_T('0'));
|
|
}
|
|
|
|
frac2 = 0;
|
|
for (; mant_size > 0; mant_size--) {
|
|
c = *p++;
|
|
if (c == ASE_T('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac2 = 10 * frac2 + (c - ASE_T('0'));
|
|
}
|
|
fraction = (1.0e9 * frac1) + frac2;
|
|
}
|
|
|
|
/* Skim off the exponent */
|
|
p = pexp;
|
|
if (p < end && (*p == ASE_T('E') || *p == ASE_T('e')))
|
|
{
|
|
p++;
|
|
|
|
if (p < end)
|
|
{
|
|
if (*p == ASE_T('-'))
|
|
{
|
|
exp_negative = 1;
|
|
p++;
|
|
}
|
|
else
|
|
{
|
|
if (*p == ASE_T('+')) p++;
|
|
exp_negative = 0;
|
|
}
|
|
}
|
|
else exp_negative = 0;
|
|
|
|
if (!(p < end && ASE_LSP_ISDIGIT (lsp, *p)))
|
|
{
|
|
/*p = pexp;*/
|
|
/*goto done;*/
|
|
goto no_exp;
|
|
}
|
|
|
|
while (p < end && ASE_LSP_ISDIGIT (lsp, *p))
|
|
{
|
|
exp = exp * 10 + (*p - ASE_T('0'));
|
|
p++;
|
|
}
|
|
}
|
|
|
|
no_exp:
|
|
if (exp_negative) exp = frac_exp - exp;
|
|
else exp = frac_exp + exp;
|
|
|
|
/*
|
|
* Generate a floating-point number that represents the exponent.
|
|
* Do this by processing the exponent one bit at a time to combine
|
|
* many powers of 2 of 10. Then combine the exponent with the
|
|
* fraction.
|
|
*/
|
|
if (exp < 0)
|
|
{
|
|
exp_negative = 1;
|
|
exp = -exp;
|
|
}
|
|
else exp_negative = 0;
|
|
|
|
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
|
|
|
|
dbl_exp = 1.0;
|
|
|
|
for (d = powers_of_10; exp != 0; exp >>= 1, d++)
|
|
{
|
|
if (exp & 01) dbl_exp *= *d;
|
|
}
|
|
|
|
if (exp_negative) fraction /= dbl_exp;
|
|
else fraction *= dbl_exp;
|
|
|
|
done:
|
|
if (endptr != ASE_NULL) *endptr = p;
|
|
return (negative)? -fraction: fraction;
|
|
}
|
|
|
|
ase_size_t ase_lsp_longtostr (
|
|
ase_long_t value, int radix, const ase_char_t* prefix,
|
|
ase_char_t* buf, ase_size_t size)
|
|
{
|
|
ase_long_t t, rem;
|
|
ase_size_t len, ret, i;
|
|
ase_size_t prefix_len;
|
|
|
|
prefix_len = (prefix != ASE_NULL)? ase_strlen(prefix): 0;
|
|
|
|
t = value;
|
|
if (t == 0)
|
|
{
|
|
/* zero */
|
|
if (buf == ASE_NULL) return prefix_len + 1;
|
|
|
|
if (size < prefix_len+1)
|
|
{
|
|
/* buffer too small */
|
|
return (ase_size_t)-1;
|
|
}
|
|
|
|
for (i = 0; i < prefix_len; i++) buf[i] = prefix[i];
|
|
buf[prefix_len] = ASE_T('0');
|
|
if (size > prefix_len+1) buf[prefix_len+1] = ASE_T('\0');
|
|
return 1;
|
|
}
|
|
|
|
/* non-zero values */
|
|
len = prefix_len;
|
|
if (t < 0) { t = -t; len++; }
|
|
while (t > 0) { len++; t /= radix; }
|
|
|
|
if (buf == ASE_NULL)
|
|
{
|
|
/* if buf is not given, return the number of bytes required */
|
|
return len;
|
|
}
|
|
|
|
if (size < len) return (ase_size_t)-1; /* buffer too small */
|
|
if (size > len) buf[len] = ASE_T('\0');
|
|
ret = len;
|
|
|
|
t = value;
|
|
if (t < 0) t = -t;
|
|
|
|
while (t > 0)
|
|
{
|
|
rem = t % radix;
|
|
if (rem >= 10)
|
|
buf[--len] = (ase_char_t)rem + ASE_T('a') - 10;
|
|
else
|
|
buf[--len] = (ase_char_t)rem + ASE_T('0');
|
|
t /= radix;
|
|
}
|
|
|
|
if (value < 0)
|
|
{
|
|
for (i = 1; i <= prefix_len; i++)
|
|
{
|
|
buf[i] = prefix[i-1];
|
|
len--;
|
|
}
|
|
buf[--len] = ASE_T('-');
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < prefix_len; i++) buf[i] = prefix[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|