qse/lib/awk/mod-math.c

731 lines
19 KiB
C

/*
* $Id$
*
Copyright (c) 2006-2019 Chung, Hyung-Hwan. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mod-math.h"
#include <qse/cmn/str.h>
#include <qse/cmn/chr.h>
#include <qse/cmn/alg.h>
#include <qse/cmn/time.h>
#include "../cmn/mem-prv.h"
#include "fnc.h"
#include <math.h>
#if defined(HAVE_QUADMATH_H)
# include <quadmath.h>
#elif defined(QSE_USE_AWK_FLTMAX) && (QSE_AWK_SIZEOF_FLT_T == 16) && defined(QSE_FLTMAX_REQUIRE_QUADMATH)
# error QUADMATH.H NOT AVAILABLE or NOT COMPILABLE
#endif
#if !defined(QSE_HAVE_CONFIG_H)
# if defined(_WIN32) || defined(__OS2__) || defined(__DOS__)
# define HAVE_CEIL
# define HAVE_FLOOR
# if !defined(__WATCOMC__) && !defined(__BORLANDC__)
# define HAVE_ROUND
# endif
# define HAVE_SINH
# define HAVE_COSH
# define HAVE_TANH
# define HAVE_ASIN
# define HAVE_ACOS
# define HAVE_SIN
# define HAVE_COS
# define HAVE_TAN
# define HAVE_ATAN
# define HAVE_ATAN2
# define HAVE_LOG
# define HAVE_LOG10
# define HAVE_EXP
# define HAVE_SQRT
# endif
#endif
typedef struct modctx_t
{
qse_awk_int_t seed;
qse_awk_uint_t prand; /* last random value returned */
} modctx_t;
static int fnc_math_1 (
qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi, qse_awk_math1_t f)
{
qse_size_t nargs;
qse_awk_val_t* a0;
qse_awk_flt_t rv;
qse_awk_val_t* r;
int n;
nargs = qse_awk_rtx_getnargs (rtx);
QSE_ASSERT (nargs == 1);
a0 = qse_awk_rtx_getarg (rtx, 0);
n = qse_awk_rtx_valtoflt (rtx, a0, &rv);
if (n <= -1) return -1;
r = qse_awk_rtx_makefltval (rtx, f (qse_awk_rtx_getawk(rtx), rv));
if (r == QSE_NULL) return -1;
qse_awk_rtx_setretval (rtx, r);
return 0;
}
static int fnc_math_2 (
qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi, qse_awk_math2_t f)
{
qse_size_t nargs;
qse_awk_val_t* a0, * a1;
qse_awk_flt_t rv0, rv1;
qse_awk_val_t* r;
int n;
nargs = qse_awk_rtx_getnargs (rtx);
QSE_ASSERT (nargs == 2);
a0 = qse_awk_rtx_getarg (rtx, 0);
a1 = qse_awk_rtx_getarg (rtx, 1);
n = qse_awk_rtx_valtoflt (rtx, a0, &rv0);
if (n <= -1) return -1;
n = qse_awk_rtx_valtoflt (rtx, a1, &rv1);
if (n <= -1) return -1;
r = qse_awk_rtx_makefltval (rtx, f (qse_awk_rtx_getawk(rtx), rv0, rv1));
if (r == QSE_NULL) return -1;
qse_awk_rtx_setretval (rtx, r);
return 0;
}
static qse_awk_flt_t math_ceil (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_CEILQ)
return ceilq (x);
#elif defined(HAVE_CEILL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return ceill (x);
#elif defined(HAVE_CEIL)
return ceil (x);
#elif defined(HAVE_CEILF)
return ceilf (x);
#else
#error ### no ceil function available ###
#endif
}
static qse_awk_flt_t math_floor (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_FLOORQ)
return floorq (x);
#elif defined(HAVE_FLOORL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return floorl (x);
#elif defined(HAVE_FLOOR)
return floor (x);
#elif defined(HAVE_FLOORF)
return floorf (x);
#else
#error ### no floor function available ###
#endif
}
static qse_awk_flt_t math_round (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_ROUNDQ)
return roundq (x);
#elif defined(HAVE_ROUNDL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return roundl (x);
#elif defined(HAVE_ROUND)
return round (x);
#elif defined(HAVE_ROUNDF)
return roundf (x);
#else
qse_flt_t f, d;
f = math_floor (awk, x);
d = x - f; /* get fraction */
if (d > (qse_awk_flt_t)0.5)
{
/* round up to the nearest */
f = f + (qse_awk_flt_t)1.0;
}
else if (d == (qse_awk_flt_t)0.5)
{
#if 1
/* round half away from zero */
if (x >= 0)
{
f = x + (qse_awk_flt_t)0.5;
}
else
{
f = x - (qse_awk_flt_t)0.5;
}
#else
/* round half to even - C99's rint() does this, i guess. */
d = f - (qse_awk_flt_t)2.0 * math_floor(awk, f * (qse_awk_flt_t)0.5);
if (d == (qse_awk_flt_t)1.0) f = f + (qse_awk_flt_t)1.0;
#endif
}
/* this implementation doesn't keep the signbit for -0.0.
* The signbit() function defined in C99 may get used to
* preserve the sign bit. but this is a fall-back rountine
* for a system without round also defined in C99.
* don't get annoyed by the lost sign bit for the value of 0.0.
*/
return f;
#endif
}
static qse_awk_flt_t math_sinh (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_SINHQ)
return sinhq (x);
#elif defined(HAVE_SINHL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return sinhl (x);
#elif defined(HAVE_SINH)
return sinh (x);
#elif defined(HAVE_SINHF)
return sinhf (x);
#else
#error ### no sinh function available ###
#endif
}
static qse_awk_flt_t math_cosh (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_COSHQ)
return coshq (x);
#elif defined(HAVE_COSHL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return coshl (x);
#elif defined(HAVE_COSH)
return cosh (x);
#elif defined(HAVE_COSHF)
return coshf (x);
#else
#error ### no cosh function available ###
#endif
}
static qse_awk_flt_t math_tanh (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_TANHQ)
return tanhq (x);
#elif defined(HAVE_TANHL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return tanhl (x);
#elif defined(HAVE_TANH)
return tanh (x);
#elif defined(HAVE_TANHF)
return tanhf (x);
#else
#error ### no tanh function available ###
#endif
}
static qse_awk_flt_t math_asin (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_ASINQ)
return asinq (x);
#elif defined(HAVE_ASINL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return asinl (x);
#elif defined(HAVE_ASIN)
return asin (x);
#elif defined(HAVE_ASINF)
return asinf (x);
#else
#error ### no asin function available ###
#endif
}
static qse_awk_flt_t math_acos (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_ACOSQ)
return acosq (x);
#elif defined(HAVE_ACOSL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return acosl (x);
#elif defined(HAVE_ACOS)
return acos (x);
#elif defined(HAVE_ACOSF)
return acosf (x);
#else
#error ### no acos function available ###
#endif
}
/* ----------------------------------------------------------------------- */
static qse_awk_flt_t math_sin (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_SINQ)
return sinq (x);
#elif defined(HAVE_SINL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return sinl (x);
#elif defined(HAVE_SIN)
return sin (x);
#elif defined(HAVE_SINF)
return sinf (x);
#else
#error ### no sin function available ###
#endif
}
static qse_awk_flt_t math_cos (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_COSQ)
return cosq (x);
#elif defined(HAVE_COSL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return cosl (x);
#elif defined(HAVE_COS)
return cos (x);
#elif defined(HAVE_COSF)
return cosf (x);
#else
#error ### no cos function available ###
#endif
}
static qse_awk_flt_t math_tan (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_TANQ)
return tanq (x);
#elif defined(HAVE_TANL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return tanl (x);
#elif defined(HAVE_TAN)
return tan (x);
#elif defined(HAVE_TANF)
return tanf (x);
#else
#error ### no tan function available ###
#endif
}
static qse_awk_flt_t math_atan (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_ATANQ)
return atanq (x);
#elif defined(HAVE_ATANL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return atanl (x);
#elif defined(HAVE_ATAN)
return atan (x);
#elif defined(HAVE_ATANF)
return atanf (x);
#else
#error ### no atan function available ###
#endif
}
static qse_awk_flt_t math_atan2 (qse_awk_t* awk, qse_awk_flt_t x, qse_awk_flt_t y)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_ATAN2Q)
return atan2q (x, y);
#elif defined(HAVE_ATAN2L) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return atan2l (x, y);
#elif defined(HAVE_ATAN2)
return atan2 (x, y);
#elif defined(HAVE_ATAN2F)
return atan2f (x, y);
#else
#error ### no atan2 function available ###
#endif
}
static QSE_INLINE qse_awk_flt_t math_log (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_LOGQ)
return logq (x);
#elif defined(HAVE_LOGL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return logl (x);
#elif defined(HAVE_LOG)
return log (x);
#elif defined(HAVE_LOGF)
return logf (x);
#else
#error ### no log function available ###
#endif
}
static qse_awk_flt_t math_log2 (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_LOG2Q)
return log2q (x);
#elif defined(HAVE_LOG2L) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return log2l (x);
#elif defined(HAVE_LOG2)
return log2 (x);
#elif defined(HAVE_LOG2F)
return log2f (x);
#else
return math_log(awk, x) / math_log(awk, 2.0);
#endif
}
static qse_awk_flt_t math_log10 (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_LOG10Q)
return log10q (x);
#elif defined(HAVE_LOG10L) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return log10l (x);
#elif defined(HAVE_LOG10)
return log10 (x);
#elif defined(HAVE_LOG10F)
return log10f (x);
#else
#error ### no log10 function available ###
#endif
}
static qse_awk_flt_t math_exp (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_EXPQ)
return expq (x);
#elif defined(HAVE_EXPL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return expl (x);
#elif defined(HAVE_EXP)
return exp (x);
#elif defined(HAVE_EXPF)
return expf (x);
#else
#error ### no exp function available ###
#endif
}
static qse_awk_flt_t math_sqrt (qse_awk_t* awk, qse_awk_flt_t x)
{
#if defined(QSE_USE_AWK_FLTMAX) && defined(HAVE_SQRTQ)
return sqrtq (x);
#elif defined(HAVE_SQRTL) && (QSE_SIZEOF_LONG_DOUBLE > QSE_SIZEOF_DOUBLE)
return sqrtl (x);
#elif defined(HAVE_SQRT)
return sqrt (x);
#elif defined(HAVE_SQRTF)
return sqrtf (x);
#else
#error ### no sqrt function available ###
#endif
}
/* ----------------------------------------------------------------------- */
static int fnc_ceil (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_ceil);
}
static int fnc_floor (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_floor);
}
static int fnc_round (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_round);
}
static int fnc_sinh (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_sinh);
}
static int fnc_cosh (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_cosh);
}
static int fnc_tanh (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_tanh);
}
static int fnc_asin (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_asin);
}
static int fnc_acos (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_acos);
}
/* ----------------------------------------------------------------------- */
static int fnc_sin (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_sin);
}
static int fnc_cos (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_cos);
}
static int fnc_tan (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_tan);
}
static int fnc_atan (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_atan);
}
static int fnc_atan2 (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_2 (rtx, fi, math_atan2);
}
static int fnc_log (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_log);
}
static int fnc_log2 (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_log2);
}
static int fnc_log10 (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_log10);
}
static int fnc_exp (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_exp);
}
static int fnc_sqrt (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
return fnc_math_1 (rtx, fi, math_sqrt);
}
/* ----------------------------------------------------------------------- */
static int fnc_rand (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
#define RANDV_MAX QSE_TYPE_MAX(qse_awk_int_t)
qse_awk_val_t* r;
qse_awk_int_t randv;
modctx_t* modctx;
modctx = (modctx_t*)fi->mod->ctx;
#if defined(QSE_USE_AWK_INTMAX)
modctx->prand = qse_randxsuintmax (modctx->prand);
#else
modctx->prand = qse_randxsulong (modctx->prand);
#endif
randv = modctx->prand % RANDV_MAX;
r = qse_awk_rtx_makefltval (rtx, (qse_awk_flt_t)randv / RANDV_MAX);
if (r == QSE_NULL) return -1;
qse_awk_rtx_setretval (rtx, r);
return 0;
#undef RANDV_MAX
}
static int fnc_srand (qse_awk_rtx_t* rtx, const qse_awk_fnc_info_t* fi)
{
qse_size_t nargs;
qse_awk_val_t* a0;
qse_awk_int_t lv;
qse_awk_val_t* r;
int n;
qse_awk_int_t prev;
qse_ntime_t now;
modctx_t* modctx;
modctx = (modctx_t*)fi->mod->ctx;
nargs = qse_awk_rtx_getnargs (rtx);
QSE_ASSERT (nargs == 0 || nargs == 1);
prev = modctx->seed;
if (nargs <= 0)
{
modctx->seed = (qse_gettime (&now) <= -1)?
(modctx->seed * modctx->seed): ((qse_awk_int_t)now.sec + (qse_awk_int_t)now.nsec);
}
else
{
a0 = qse_awk_rtx_getarg (rtx, 0);
n = qse_awk_rtx_valtoint (rtx, a0, &lv);
if (n <= -1) return -1;
modctx->seed = lv;
}
/* i don't care if the seed becomes negative or overflows.
* i just convert the signed value to the unsigned one. */
modctx->prand = (qse_awk_uint_t)(modctx->seed * modctx->seed * modctx->seed);
/* make sure that the actual seeding is not 0 */
if (modctx->prand == 0) modctx->prand++;
r = qse_awk_rtx_makeintval (rtx, prev);
if (r == QSE_NULL) return -1;
qse_awk_rtx_setretval (rtx, r);
return 0;
}
/* ----------------------------------------------------------------------- */
typedef struct fnctab_t fnctab_t;
struct fnctab_t
{
const qse_char_t* name;
qse_awk_mod_sym_fnc_t info;
};
static fnctab_t fnctab[] =
{
/* keep this table sorted for binary search in query(). */
{ QSE_T("acos"), { { 1, 1, QSE_NULL }, fnc_acos, 0 } },
{ QSE_T("asin"), { { 1, 1, QSE_NULL }, fnc_asin, 0 } },
{ QSE_T("atan"), { { 1, 1, QSE_NULL }, fnc_atan, 0 } },
{ QSE_T("atan2"), { { 2, 2, QSE_NULL }, fnc_atan2, 0 } },
{ QSE_T("ceil"), { { 1, 1, QSE_NULL }, fnc_ceil, 0 } },
{ QSE_T("cos"), { { 1, 1, QSE_NULL }, fnc_cos, 0 } },
{ QSE_T("cosh"), { { 1, 1, QSE_NULL }, fnc_cosh, 0 } },
{ QSE_T("exp"), { { 1, 1, QSE_NULL }, fnc_exp, 0 } },
{ QSE_T("floor"), { { 1, 1, QSE_NULL }, fnc_floor, 0 } },
{ QSE_T("log"), { { 1, 1, QSE_NULL }, fnc_log, 0 } },
{ QSE_T("log10"), { { 1, 1, QSE_NULL }, fnc_log10, 0 } },
{ QSE_T("log2"), { { 1, 1, QSE_NULL }, fnc_log2, 0 } },
{ QSE_T("rand"), { { 0, 0, QSE_NULL }, fnc_rand, 0 } },
{ QSE_T("round"), { { 1, 1, QSE_NULL }, fnc_round, 0 } },
{ QSE_T("sin"), { { 1, 1, QSE_NULL }, fnc_sin, 0 } },
{ QSE_T("sinh"), { { 1, 1, QSE_NULL }, fnc_sinh, 0 } },
{ QSE_T("sqrt"), { { 1, 1, QSE_NULL }, fnc_sqrt, 0 } },
{ QSE_T("srand"), { { 0, 1, QSE_NULL }, fnc_srand, 0 } },
{ QSE_T("tan"), { { 1, 1, QSE_NULL }, fnc_tan, 0 } },
{ QSE_T("tanh"), { { 1, 1, QSE_NULL }, fnc_tanh, 0 } }
};
static int query (qse_awk_mod_t* mod, qse_awk_t* awk, const qse_char_t* name, qse_awk_mod_sym_t* sym)
{
qse_cstr_t ea;
int left, right, mid, n;
left = 0; right = QSE_COUNTOF(fnctab) - 1;
while (left <= right)
{
mid = left + (right - left) / 2;
n = qse_strcmp (fnctab[mid].name, name);
if (n > 0) right = mid - 1;
else if (n < 0) left = mid + 1;
else
{
sym->type = QSE_AWK_MOD_FNC;
sym->u.fnc = fnctab[mid].info;
return 0;
}
}
#if 0
left = 0; right = QSE_COUNTOF(inttab) - 1;
while (left <= right)
{
mid = left + (right - left) / 2;
n = qse_strcmp (inttab[mid].name, name);
if (n > 0) right = mid - 1;
else if (n < 0) left = mid + 1;
else
{
sym->type = QSE_AWK_MOD_INT;
sym->u.in = inttab[mid].info;
return 0;
}
}
#endif
ea.ptr = (qse_char_t*)name;
ea.len = qse_strlen(name);
qse_awk_seterror (awk, QSE_AWK_ENOENT, &ea, QSE_NULL);
return -1;
}
/* TODO: proper resource management */
static int init (qse_awk_mod_t* mod, qse_awk_rtx_t* rtx)
{
return 0;
}
static void fini (qse_awk_mod_t* mod, qse_awk_rtx_t* rtx)
{
/* TODO: anything */
}
static void unload (qse_awk_mod_t* mod, qse_awk_t* awk)
{
modctx_t* modctx;
modctx = (modctx_t*)mod->ctx;
qse_awk_freemem (awk, modctx);
}
int qse_awk_mod_math (qse_awk_mod_t* mod, qse_awk_t* awk)
{
modctx_t* modctx;
qse_ntime_t now;
modctx = qse_awk_allocmem (awk, QSE_SIZEOF(*modctx));
if (modctx == QSE_NULL)
{
qse_awk_seterrnum (awk, QSE_AWK_ENOMEM, QSE_NULL);
return -1;
}
QSE_MEMSET (modctx, 0, QSE_SIZEOF(*modctx));
modctx->seed = (qse_gettime (&now) <= -1)? 0u: ((qse_awk_int_t)now.sec + (qse_awk_int_t)now.nsec);
/* i don't care if the seed becomes negative or overflows.
* i just convert the signed value to the unsigned one. */
modctx->prand = (qse_awk_uint_t)(modctx->seed * modctx->seed * modctx->seed);
/* make sure that the actual seeding is not 0 */
if (modctx->prand == 0) modctx->prand++;
mod->query = query;
mod->unload = unload;
mod->init = init;
mod->fini = fini;
mod->ctx = modctx;
return 0;
}