284 lines
5.6 KiB
C
284 lines
5.6 KiB
C
/*
|
|
* $Id: misc.c,v 1.6 2006-04-26 15:49:33 bacon Exp $
|
|
*/
|
|
|
|
#include <xp/awk/awk_i.h>
|
|
|
|
#ifndef XP_AWK_STAND_ALONE
|
|
#include <xp/bas/ctype.h>
|
|
#include <xp/bas/assert.h>
|
|
#endif
|
|
|
|
xp_long_t xp_awk_strtolong (
|
|
const xp_char_t* str, int base, const xp_char_t** endptr)
|
|
{
|
|
xp_long_t n = 0;
|
|
const xp_char_t* p;
|
|
int digit, negative = 0;
|
|
|
|
xp_assert (base < 37);
|
|
|
|
p = str; while (xp_isspace(*p)) p++;
|
|
|
|
while (*p != XP_CHAR('\0'))
|
|
{
|
|
if (*p == XP_CHAR('-'))
|
|
{
|
|
negative = ~negative;
|
|
p++;
|
|
}
|
|
else if (*p == XP_CHAR('+')) p++;
|
|
else break;
|
|
}
|
|
|
|
if (base == 0)
|
|
{
|
|
if (*p == XP_CHAR('0'))
|
|
{
|
|
p++;
|
|
if (*p == XP_CHAR('x') || *p == XP_CHAR('X'))
|
|
{
|
|
p++; base = 16;
|
|
}
|
|
else if (*p == XP_CHAR('b') || *p == XP_CHAR('B'))
|
|
{
|
|
p++; base = 2;
|
|
}
|
|
else base = 8;
|
|
}
|
|
else base = 10;
|
|
}
|
|
else if (base == 16)
|
|
{
|
|
if (*p == XP_CHAR('0') &&
|
|
(*(p+1) == XP_CHAR('x') || *(p+1) == XP_CHAR('X'))) p += 2;
|
|
}
|
|
else if (base == 2)
|
|
{
|
|
if (*p == XP_CHAR('0') &&
|
|
(*(p+1) == XP_CHAR('b') || *(p+1) == XP_CHAR('B'))) p += 2;
|
|
}
|
|
|
|
while (*p != XP_CHAR('\0'))
|
|
{
|
|
if (*p >= XP_CHAR('0') && *p <= XP_CHAR('9'))
|
|
digit = *p - XP_CHAR('0');
|
|
else if (*p >= XP_CHAR('A') && *p <= XP_CHAR('Z'))
|
|
digit = *p - XP_CHAR('A') + 10;
|
|
else if (*p >= XP_CHAR('a') && *p <= XP_CHAR('z'))
|
|
digit = *p - XP_CHAR('a') + 10;
|
|
else break;
|
|
|
|
if (digit >= base) break;
|
|
n = n * base + digit;
|
|
|
|
p++;
|
|
}
|
|
|
|
if (endptr != XP_NULL) *endptr = p;
|
|
return (negative)? -n: n;
|
|
}
|
|
|
|
|
|
/*
|
|
* xp_awk_strtoreal is almost a replica of strtod.
|
|
*
|
|
* strtod.c --
|
|
*
|
|
* Source code for the "strtod" library procedure.
|
|
*
|
|
* Copyright (c) 1988-1993 The Regents of the University of California.
|
|
* Copyright (c) 1994 Sun Microsystems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software and its documentation for any purpose and without
|
|
* fee is hereby granted, provided that the above copyright
|
|
* notice appear in all copies. The University of California
|
|
* makes no representations about the suitability of this
|
|
* software for any purpose. It is provided "as is" without
|
|
* express or implied warranty.
|
|
*/
|
|
|
|
#define MAX_EXPONENT 511
|
|
|
|
xp_real_t xp_awk_strtoreal (const xp_char_t* str)
|
|
{
|
|
/*
|
|
* Table giving binary powers of 10. Entry is 10^2^i.
|
|
* Used to convert decimal exponents into floating-point numbers.
|
|
*/
|
|
static xp_real_t powersOf10[] = {
|
|
10., 100., 1.0e4, 1.0e8, 1.0e16,
|
|
1.0e32, 1.0e64, 1.0e128, 1.0e256
|
|
};
|
|
|
|
xp_real_t fraction, dblExp, * d;
|
|
const xp_char_t* p;
|
|
xp_cint_t c;
|
|
int exp = 0; /* Exponent read from "EX" field */
|
|
|
|
/*
|
|
* Exponent that derives from the fractional part. Under normal
|
|
* circumstatnces, it is the negative of the number of digits in F.
|
|
* However, if I is very long, the last digits of I get dropped
|
|
* (otherwise a long I with a large negative exponent could cause an
|
|
* unnecessary overflow on I alone). In this case, frac_exp is
|
|
* incremented one for each dropped digit.
|
|
*/
|
|
|
|
int frac_exp;
|
|
int mantSize; /* Number of digits in mantissa. */
|
|
int decPt; /* Number of mantissa digits BEFORE decimal point */
|
|
const xp_char_t *pExp; /* Temporarily holds location of exponent in string */
|
|
int sign = 0, expSign = 0;
|
|
|
|
p = str;
|
|
|
|
/* Strip off leading blanks and check for a sign */
|
|
while (xp_isspace(*p)) p++;
|
|
|
|
while (*p != XP_CHAR('\0'))
|
|
{
|
|
if (*p == XP_CHAR('-'))
|
|
{
|
|
sign = ~sign;
|
|
p++;
|
|
}
|
|
else if (*p == XP_CHAR('+')) p++;
|
|
else break;
|
|
}
|
|
|
|
/* Count the number of digits in the mantissa (including the decimal
|
|
* point), and also locate the decimal point. */
|
|
decPt = -1;
|
|
for (mantSize = 0; ; mantSize++) {
|
|
c = *p;
|
|
if (!xp_isdigit(c)) {
|
|
if ((c != XP_CHAR('.')) || (decPt >= 0)) break;
|
|
decPt = mantSize;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/*
|
|
* Now suck up the digits in the mantissa. Use two integers to
|
|
* collect 9 digits each (this is faster than using floating-point).
|
|
* If the mantissa has more than 18 digits, ignore the extras, since
|
|
* they can't affect the value anyway.
|
|
*/
|
|
pExp = p;
|
|
p -= mantSize;
|
|
if (decPt < 0)
|
|
{
|
|
decPt = mantSize;
|
|
}
|
|
else
|
|
{
|
|
mantSize -= 1; /* One of the digits was the point */
|
|
}
|
|
|
|
if (mantSize > 18)
|
|
{
|
|
frac_exp = decPt - 18;
|
|
mantSize = 18;
|
|
}
|
|
else
|
|
{
|
|
frac_exp = decPt - mantSize;
|
|
}
|
|
|
|
if (mantSize == 0)
|
|
{
|
|
fraction = 0.0;
|
|
/*p = str;*/
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
int frac1, frac2;
|
|
frac1 = 0;
|
|
for ( ; mantSize > 9; mantSize -= 1)
|
|
{
|
|
c = *p;
|
|
p++;
|
|
if (c == XP_CHAR('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac1 = 10 * frac1 + (c - XP_CHAR('0'));
|
|
}
|
|
frac2 = 0;
|
|
for (; mantSize > 0; mantSize -= 1) {
|
|
c = *p;
|
|
p++;
|
|
if (c == XP_CHAR('.'))
|
|
{
|
|
c = *p;
|
|
p++;
|
|
}
|
|
frac2 = 10*frac2 + (c - XP_CHAR('0'));
|
|
}
|
|
fraction = (1.0e9 * frac1) + frac2;
|
|
}
|
|
|
|
/* Skim off the exponent */
|
|
p = pExp;
|
|
if ((*p == XP_CHAR('E')) || (*p == XP_CHAR('e')))
|
|
{
|
|
p++;
|
|
if (*p == XP_CHAR('-'))
|
|
{
|
|
expSign = 1;
|
|
p++;
|
|
}
|
|
else
|
|
{
|
|
if (*p == XP_CHAR('+')) p++;
|
|
expSign = 0;
|
|
}
|
|
if (!xp_isdigit(*p))
|
|
{
|
|
/* p = pExp; */
|
|
goto done;
|
|
}
|
|
while (xp_isdigit(*p))
|
|
{
|
|
exp = exp * 10 + (*p - XP_CHAR('0'));
|
|
p++;
|
|
}
|
|
}
|
|
|
|
if (expSign) exp = frac_exp - exp;
|
|
else exp = frac_exp + exp;
|
|
|
|
/*
|
|
* Generate a floating-point number that represents the exponent.
|
|
* Do this by processing the exponent one bit at a time to combine
|
|
* many powers of 2 of 10. Then combine the exponent with the
|
|
* fraction.
|
|
*/
|
|
if (exp < 0)
|
|
{
|
|
expSign = 1;
|
|
exp = -exp;
|
|
}
|
|
else expSign = 0;
|
|
|
|
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
|
|
|
|
dblExp = 1.0;
|
|
|
|
for (d = powersOf10; exp != 0; exp >>= 1, d++)
|
|
{
|
|
if (exp & 01) dblExp *= *d;
|
|
}
|
|
|
|
if (expSign) fraction /= dblExp;
|
|
else fraction *= dblExp;
|
|
|
|
done:
|
|
return (sign)? -fraction: fraction;
|
|
}
|
|
|