qse/ase/awk/misc.c

281 lines
5.5 KiB
C

/*
* $Id: misc.c,v 1.3 2006-04-04 16:45:21 bacon Exp $
*/
#include <xp/awk/awk_i.h>
#ifndef __STAND_ALONE
#include <xp/bas/ctype.h>
#include <xp/bas/assert.h>
#endif
xp_long_t xp_awk_strtolong (const xp_char_t* str, int base)
{
xp_long_t n = 0;
const xp_char_t* p;
int digit, negative = 0;
xp_assert (base < 37);
p = str; while (xp_isspace(*p)) p++;
while (*p != XP_CHAR('\0'))
{
if (*p == XP_CHAR('-'))
{
negative = ~negative;
p++;
}
else if (*p == XP_CHAR('+')) p++;
else break;
}
if (base == 0)
{
if (*p == XP_CHAR('0'))
{
p++;
if (*p == XP_CHAR('x') || *p == XP_CHAR('X'))
{
p++; base = 16;
}
else if (*p == XP_CHAR('b') || *p == XP_CHAR('B'))
{
p++; base = 2;
}
else base = 8;
}
else base = 10;
}
else if (base == 16)
{
if (*p == XP_CHAR('0') &&
(*(p+1) == XP_CHAR('x') || *(p+1) == XP_CHAR('X'))) p += 2;
}
else if (base == 2)
{
if (*p == XP_CHAR('0') &&
(*(p+1) == XP_CHAR('b') || *(p+1) == XP_CHAR('B'))) p += 2;
}
while (*p != XP_CHAR('\0'))
{
if (*p >= XP_CHAR('0') && *p <= XP_CHAR('9'))
digit = *p - XP_CHAR('0');
else if (*p >= XP_CHAR('A') && *p <= XP_CHAR('Z'))
digit = *p - XP_CHAR('A') + 10;
else if (*p >= XP_CHAR('a') && *p <= XP_CHAR('z'))
digit = *p - XP_CHAR('a') + 10;
else break;
if (digit >= base) break;
n = n * base + digit;
p++;
}
return (negative)? -n: n;
}
/*
* xp_awk_strtoreal is almost a replica of strtod.
*
* strtod.c --
*
* Source code for the "strtod" library procedure.
*
* Copyright (c) 1988-1993 The Regents of the University of California.
* Copyright (c) 1994 Sun Microsystems, Inc.
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. The University of California
* makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without
* express or implied warranty.
*/
#define MAX_EXPONENT 511
xp_real_t xp_awk_strtoreal (const xp_char_t* str)
{
/*
* Table giving binary powers of 10. Entry is 10^2^i.
* Used to convert decimal exponents into floating-point numbers.
*/
static xp_real_t powersOf10[] = {
10., 100., 1.0e4, 1.0e8, 1.0e16,
1.0e32, 1.0e64, 1.0e128, 1.0e256
};
xp_real_t fraction, dblExp, * d;
const xp_char_t* p;
xp_cint_t c;
int exp = 0; // Exponent read from "EX" field.
/*
* Exponent that derives from the fractional part. Under normal
* circumstatnces, it is the negative of the number of digits in F.
* However, if I is very long, the last digits of I get dropped
* (otherwise a long I with a large negative exponent could cause an
* unnecessary overflow on I alone). In this case, fracExp is
* incremented one for each dropped digit.
*/
int fracExp = 0;
int mantSize; // Number of digits in mantissa.
int decPt; // Number of mantissa digits BEFORE decimal point
const xp_char_t *pExp; // Temporarily holds location of exponent in string.
int sign = 0, expSign = 0;
p = str;
// Strip off leading blanks and check for a sign.
while (xp_isspace(*p)) p++;
while (*p != XP_CHAR('\0'))
{
if (*p == XP_CHAR('-'))
{
sign = ~sign;
p++;
}
else if (*p == XP_CHAR('+')) p++;
else break;
}
// Count the number of digits in the mantissa (including the decimal
// point), and also locate the decimal point.
decPt = -1;
for (mantSize = 0; ; mantSize++) {
c = *p;
if (!xp_isdigit(c)) {
if ((c != XP_CHAR('.')) || (decPt >= 0)) break;
decPt = mantSize;
}
p++;
}
/*
* Now suck up the digits in the mantissa. Use two integers to
* collect 9 digits each (this is faster than using floating-point).
* If the mantissa has more than 18 digits, ignore the extras, since
* they can't affect the value anyway.
*/
pExp = p;
p -= mantSize;
if (decPt < 0)
{
decPt = mantSize;
}
else
{
mantSize -= 1; // One of the digits was the point.
}
if (mantSize > 18)
{
fracExp = decPt - 18;
mantSize = 18;
}
else
{
fracExp = decPt - mantSize;
}
if (mantSize == 0)
{
fraction = 0.0;
p = str;
goto done;
}
else
{
int frac1, frac2;
frac1 = 0;
for ( ; mantSize > 9; mantSize -= 1)
{
c = *p;
p++;
if (c == XP_CHAR('.'))
{
c = *p;
p++;
}
frac1 = 10 * frac1 + (c - XP_CHAR('0'));
}
frac2 = 0;
for (; mantSize > 0; mantSize -= 1) {
c = *p;
p++;
if (c == XP_CHAR('.'))
{
c = *p;
p++;
}
frac2 = 10*frac2 + (c - XP_CHAR('0'));
}
fraction = (1.0e9 * frac1) + frac2;
}
// Skim off the exponent.
p = pExp;
if ((*p == XP_CHAR('E')) || (*p == XP_CHAR('e')))
{
p++;
if (*p == XP_CHAR('-'))
{
expSign = 1;
p++;
}
else
{
if (*p == XP_CHAR('+')) p++;
expSign = 0;
}
if (!xp_isdigit(*p))
{
p = pExp;
goto done;
}
while (xp_isdigit(*p))
{
exp = exp * 10 + (*p - XP_CHAR('0'));
p++;
}
}
if (expSign) exp = fracExp - exp;
else exp = fracExp + exp;
/*
* Generate a floating-point number that represents the exponent.
* Do this by processing the exponent one bit at a time to combine
* many powers of 2 of 10. Then combine the exponent with the
* fraction.
*/
if (exp < 0)
{
expSign = 1;
exp = -exp;
}
else expSign = 0;
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
dblExp = 1.0;
for (d = powersOf10; exp != 0; exp >>= 1, d++)
{
if (exp & 01) dblExp *= *d;
}
if (expSign) fraction /= dblExp;
else fraction *= dblExp;
done:
return (sign)? -fraction: fraction;
}