/* * $Id: misc.c 117 2008-03-03 11:20:05Z baconevi $ * * {License} */ #include ase_long_t ase_lsp_strxtolong ( ase_lsp_t* lsp, const ase_char_t* str, ase_size_t len, int base, const ase_char_t** endptr) { ase_long_t n = 0; const ase_char_t* p; const ase_char_t* end; ase_size_t rem; int digit, negative = 0; ASE_ASSERT (base < 37); p = str; end = str + len; /* strip off leading spaces */ /*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/ /* check for a sign */ /*while (*p != ASE_T('\0')) */ while (p < end) { if (*p == ASE_T('-')) { negative = ~negative; p++; } else if (*p == ASE_T('+')) p++; else break; } /* check for a binary/octal/hexadecimal notation */ rem = end - p; if (base == 0) { if (rem >= 1 && *p == ASE_T('0')) { p++; if (rem == 1) base = 8; else if (*p == ASE_T('x') || *p == ASE_T('X')) { p++; base = 16; } else if (*p == ASE_T('b') || *p == ASE_T('B')) { p++; base = 2; } else base = 8; } else base = 10; } else if (rem >= 2 && base == 16) { if (*p == ASE_T('0') && (*(p+1) == ASE_T('x') || *(p+1) == ASE_T('X'))) p += 2; } else if (rem >= 2 && base == 2) { if (*p == ASE_T('0') && (*(p+1) == ASE_T('b') || *(p+1) == ASE_T('B'))) p += 2; } /* process the digits */ /*while (*p != ASE_T('\0'))*/ while (p < end) { if (*p >= ASE_T('0') && *p <= ASE_T('9')) digit = *p - ASE_T('0'); else if (*p >= ASE_T('A') && *p <= ASE_T('Z')) digit = *p - ASE_T('A') + 10; else if (*p >= ASE_T('a') && *p <= ASE_T('z')) digit = *p - ASE_T('a') + 10; else break; if (digit >= base) break; n = n * base + digit; p++; } if (endptr != ASE_NULL) *endptr = p; return (negative)? -n: n; } /* * ase_lsp_strtoreal is almost a replica of strtod. * * strtod.c -- * * Source code for the "strtod" library procedure. * * Copyright (c) 1988-1993 The Regents of the University of California. * Copyright (c) 1994 Sun Microsystems, Inc. * * Permission to use, copy, modify, and distribute this * software and its documentation for any purpose and without * fee is hereby granted, provided that the above copyright * notice appear in all copies. The University of California * makes no representations about the suitability of this * software for any purpose. It is provided "as is" without * express or implied warranty. */ #define MAX_EXPONENT 511 ase_real_t ase_lsp_strtoreal (ase_lsp_t* lsp, const ase_char_t* str) { /* * Table giving binary powers of 10. Entry is 10^2^i. * Used to convert decimal exponents into floating-point numbers. */ static ase_real_t powers_of_10[] = { 10., 100., 1.0e4, 1.0e8, 1.0e16, 1.0e32, 1.0e64, 1.0e128, 1.0e256 }; ase_real_t fraction, dbl_exp, * d; const ase_char_t* p; ase_cint_t c; int exp = 0; /* Esseonent read from "EX" field */ /* * Esseonent that derives from the fractional part. Under normal * circumstatnces, it is the negative of the number of digits in F. * However, if I is very long, the last digits of I get dropped * (otherwise a long I with a large negative exponent could cause an * unnecessary overflow on I alone). In this case, frac_exp is * incremented one for each dropped digit. */ int frac_exp; int mant_size; /* Number of digits in mantissa. */ int dec_pt; /* Number of mantissa digits BEFORE decimal point */ const ase_char_t *pexp; /* Temporarily holds location of exponent in string */ int negative = 0, exp_negative = 0; p = str; /* strip off leading blanks */ /*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/ /* check for a sign */ while (*p != ASE_T('\0')) { if (*p == ASE_T('-')) { negative = ~negative; p++; } else if (*p == ASE_T('+')) p++; else break; } /* Count the number of digits in the mantissa (including the decimal * point), and also locate the decimal point. */ dec_pt = -1; for (mant_size = 0; ; mant_size++) { c = *p; if (!ASE_LSP_ISDIGIT (lsp, c)) { if ((c != ASE_T('.')) || (dec_pt >= 0)) break; dec_pt = mant_size; } p++; } /* * Now suck up the digits in the mantissa. Use two integers to * collect 9 digits each (this is faster than using floating-point). * If the mantissa has more than 18 digits, ignore the extras, since * they can't affect the value anyway. */ pexp = p; p -= mant_size; if (dec_pt < 0) { dec_pt = mant_size; } else { mant_size--; /* One of the digits was the point */ } if (mant_size > 18) { frac_exp = dec_pt - 18; mant_size = 18; } else { frac_exp = dec_pt - mant_size; } if (mant_size == 0) { fraction = 0.0; /*p = str;*/ p = pexp; goto done; } else { int frac1, frac2; frac1 = 0; for ( ; mant_size > 9; mant_size--) { c = *p; p++; if (c == ASE_T('.')) { c = *p; p++; } frac1 = 10 * frac1 + (c - ASE_T('0')); } frac2 = 0; for (; mant_size > 0; mant_size--) { c = *p; p++; if (c == ASE_T('.')) { c = *p; p++; } frac2 = 10*frac2 + (c - ASE_T('0')); } fraction = (1.0e9 * frac1) + frac2; } /* Skim off the exponent */ p = pexp; if ((*p == ASE_T('E')) || (*p == ASE_T('e'))) { p++; if (*p == ASE_T('-')) { exp_negative = 1; p++; } else { if (*p == ASE_T('+')) p++; exp_negative = 0; } if (!ASE_LSP_ISDIGIT (lsp, *p)) { /* p = pexp; */ /* goto done; */ goto no_exp; } while (ASE_LSP_ISDIGIT (lsp, *p)) { exp = exp * 10 + (*p - ASE_T('0')); p++; } } no_exp: if (exp_negative) exp = frac_exp - exp; else exp = frac_exp + exp; /* * Generate a floating-point number that represents the exponent. * Do this by processing the exponent one bit at a time to combine * many powers of 2 of 10. Then combine the exponent with the * fraction. */ if (exp < 0) { exp_negative = 1; exp = -exp; } else exp_negative = 0; if (exp > MAX_EXPONENT) exp = MAX_EXPONENT; dbl_exp = 1.0; for (d = powers_of_10; exp != 0; exp >>= 1, d++) { if (exp & 01) dbl_exp *= *d; } if (exp_negative) fraction /= dbl_exp; else fraction *= dbl_exp; done: return (negative)? -fraction: fraction; } ase_real_t ase_lsp_strxtoreal ( ase_lsp_t* lsp, const ase_char_t* str, ase_size_t len, const ase_char_t** endptr) { /* * Table giving binary powers of 10. Entry is 10^2^i. * Used to convert decimal exponents into floating-point numbers. */ static ase_real_t powers_of_10[] = { 10., 100., 1.0e4, 1.0e8, 1.0e16, 1.0e32, 1.0e64, 1.0e128, 1.0e256 }; ase_real_t fraction, dbl_exp, * d; const ase_char_t* p, * end; ase_cint_t c; int exp = 0; /* Esseonent read from "EX" field */ /* * Esseonent that derives from the fractional part. Under normal * circumstatnces, it is the negative of the number of digits in F. * However, if I is very long, the last digits of I get dropped * (otherwise a long I with a large negative exponent could cause an * unnecessary overflow on I alone). In this case, frac_exp is * incremented one for each dropped digit. */ int frac_exp; int mant_size; /* Number of digits in mantissa. */ int dec_pt; /* Number of mantissa digits BEFORE decimal point */ const ase_char_t *pexp; /* Temporarily holds location of exponent in string */ int negative = 0, exp_negative = 0; p = str; end = str + len; /* Strip off leading blanks and check for a sign */ /*while (ASE_LSP_ISSPACE(lsp,*p)) p++;*/ /*while (*p != ASE_T('\0')) */ while (p < end) { if (*p == ASE_T('-')) { negative = ~negative; p++; } else if (*p == ASE_T('+')) p++; else break; } /* Count the number of digits in the mantissa (including the decimal * point), and also locate the decimal point. */ dec_pt = -1; /*for (mant_size = 0; ; mant_size++) */ for (mant_size = 0; p < end; mant_size++) { c = *p; if (!ASE_LSP_ISDIGIT (lsp, c)) { if (c != ASE_T('.') || dec_pt >= 0) break; dec_pt = mant_size; } p++; } /* * Now suck up the digits in the mantissa. Use two integers to * collect 9 digits each (this is faster than using floating-point). * If the mantissa has more than 18 digits, ignore the extras, since * they can't affect the value anyway. */ pexp = p; p -= mant_size; if (dec_pt < 0) { dec_pt = mant_size; } else { mant_size--; /* One of the digits was the point */ } if (mant_size > 18) /* TODO: is 18 correct for ase_real_t??? */ { frac_exp = dec_pt - 18; mant_size = 18; } else { frac_exp = dec_pt - mant_size; } if (mant_size == 0) { fraction = 0.0; /*p = str;*/ p = pexp; goto done; } else { int frac1, frac2; frac1 = 0; for ( ; mant_size > 9; mant_size--) { c = *p; p++; if (c == ASE_T('.')) { c = *p; p++; } frac1 = 10 * frac1 + (c - ASE_T('0')); } frac2 = 0; for (; mant_size > 0; mant_size--) { c = *p++; if (c == ASE_T('.')) { c = *p; p++; } frac2 = 10 * frac2 + (c - ASE_T('0')); } fraction = (1.0e9 * frac1) + frac2; } /* Skim off the exponent */ p = pexp; if (p < end && (*p == ASE_T('E') || *p == ASE_T('e'))) { p++; if (p < end) { if (*p == ASE_T('-')) { exp_negative = 1; p++; } else { if (*p == ASE_T('+')) p++; exp_negative = 0; } } else exp_negative = 0; if (!(p < end && ASE_LSP_ISDIGIT (lsp, *p))) { /*p = pexp;*/ /*goto done;*/ goto no_exp; } while (p < end && ASE_LSP_ISDIGIT (lsp, *p)) { exp = exp * 10 + (*p - ASE_T('0')); p++; } } no_exp: if (exp_negative) exp = frac_exp - exp; else exp = frac_exp + exp; /* * Generate a floating-point number that represents the exponent. * Do this by processing the exponent one bit at a time to combine * many powers of 2 of 10. Then combine the exponent with the * fraction. */ if (exp < 0) { exp_negative = 1; exp = -exp; } else exp_negative = 0; if (exp > MAX_EXPONENT) exp = MAX_EXPONENT; dbl_exp = 1.0; for (d = powers_of_10; exp != 0; exp >>= 1, d++) { if (exp & 01) dbl_exp *= *d; } if (exp_negative) fraction /= dbl_exp; else fraction *= dbl_exp; done: if (endptr != ASE_NULL) *endptr = p; return (negative)? -fraction: fraction; } ase_size_t ase_lsp_longtostr ( ase_long_t value, int radix, const ase_char_t* prefix, ase_char_t* buf, ase_size_t size) { ase_long_t t, rem; ase_size_t len, ret, i; ase_size_t prefix_len; prefix_len = (prefix != ASE_NULL)? ase_strlen(prefix): 0; t = value; if (t == 0) { /* zero */ if (buf == ASE_NULL) return prefix_len + 1; if (size < prefix_len+1) { /* buffer too small */ return (ase_size_t)-1; } for (i = 0; i < prefix_len; i++) buf[i] = prefix[i]; buf[prefix_len] = ASE_T('0'); if (size > prefix_len+1) buf[prefix_len+1] = ASE_T('\0'); return 1; } /* non-zero values */ len = prefix_len; if (t < 0) { t = -t; len++; } while (t > 0) { len++; t /= radix; } if (buf == ASE_NULL) { /* if buf is not given, return the number of bytes required */ return len; } if (size < len) return (ase_size_t)-1; /* buffer too small */ if (size > len) buf[len] = ASE_T('\0'); ret = len; t = value; if (t < 0) t = -t; while (t > 0) { rem = t % radix; if (rem >= 10) buf[--len] = (ase_char_t)rem + ASE_T('a') - 10; else buf[--len] = (ase_char_t)rem + ASE_T('0'); t /= radix; } if (value < 0) { for (i = 1; i <= prefix_len; i++) { buf[i] = prefix[i-1]; len--; } buf[--len] = ASE_T('-'); } else { for (i = 0; i < prefix_len; i++) buf[i] = prefix[i]; } return ret; }