2019-05-10 10:01:03 +00:00
|
|
|
/*
|
|
|
|
* $Id$
|
|
|
|
*
|
2019-06-06 05:28:23 +00:00
|
|
|
Copyright (c) 2006-2019 Chung, Hyung-Hwan. All rights reserved.
|
2019-05-10 10:01:03 +00:00
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
|
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2019-05-08 13:10:00 +00:00
|
|
|
/* this file is supposed to be included by misc.c */
|
2019-04-15 04:30:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
qse_awk_int_t awk_strxtoint (qse_awk_t* awk, const char_t* str, qse_size_t len, int base, const char_t** endptr)
|
|
|
|
{
|
|
|
|
qse_awk_int_t n = 0;
|
|
|
|
const char_t* p;
|
|
|
|
const char_t* end;
|
|
|
|
qse_size_t rem;
|
|
|
|
int digit, negative = 0;
|
|
|
|
|
|
|
|
QSE_ASSERT (base < 37);
|
|
|
|
|
|
|
|
p = str;
|
|
|
|
end = str + len;
|
|
|
|
|
|
|
|
if (awk->opt.trait & QSE_AWK_STRIPSTRSPC)
|
|
|
|
{
|
|
|
|
/* strip off leading spaces */
|
|
|
|
while (p < end && AWK_ISSPACE(awk,*p)) p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for a sign */
|
|
|
|
while (p < end)
|
|
|
|
{
|
|
|
|
if (*p == _T('-'))
|
|
|
|
{
|
|
|
|
negative = ~negative;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
else if (*p == _T('+')) p++;
|
|
|
|
else break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for a binary/octal/hexadecimal notation */
|
|
|
|
rem = end - p;
|
|
|
|
if (base == 0)
|
|
|
|
{
|
|
|
|
if (rem >= 1 && *p == _T('0'))
|
|
|
|
{
|
|
|
|
p++;
|
|
|
|
|
|
|
|
if (rem == 1) base = 8;
|
|
|
|
else if (*p == _T('x') || *p == _T('X'))
|
|
|
|
{
|
|
|
|
p++; base = 16;
|
|
|
|
}
|
|
|
|
else if (*p == _T('b') || *p == _T('B'))
|
|
|
|
{
|
|
|
|
p++; base = 2;
|
|
|
|
}
|
|
|
|
else base = 8;
|
|
|
|
}
|
|
|
|
else base = 10;
|
|
|
|
}
|
|
|
|
else if (rem >= 2 && base == 16)
|
|
|
|
{
|
|
|
|
if (*p == _T('0') &&
|
|
|
|
(*(p+1) == _T('x') || *(p+1) == _T('X'))) p += 2;
|
|
|
|
}
|
|
|
|
else if (rem >= 2 && base == 2)
|
|
|
|
{
|
|
|
|
if (*p == _T('0') &&
|
|
|
|
(*(p+1) == _T('b') || *(p+1) == _T('B'))) p += 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* process the digits */
|
|
|
|
while (p < end)
|
|
|
|
{
|
|
|
|
if (*p >= _T('0') && *p <= _T('9'))
|
|
|
|
digit = *p - _T('0');
|
|
|
|
else if (*p >= _T('A') && *p <= _T('Z'))
|
|
|
|
digit = *p - _T('A') + 10;
|
|
|
|
else if (*p >= _T('a') && *p <= _T('z'))
|
|
|
|
digit = *p - _T('a') + 10;
|
|
|
|
else break;
|
|
|
|
|
|
|
|
if (digit >= base) break;
|
|
|
|
n = n * base + digit;
|
|
|
|
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (endptr) *endptr = p;
|
|
|
|
return (negative)? -n: n;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* qse_awk_strtoflt is almost a replica of strtod.
|
|
|
|
*
|
|
|
|
* strtod.c --
|
|
|
|
*
|
|
|
|
* Source code for the "strtod" library procedure.
|
|
|
|
*
|
|
|
|
* Copyright (c) 1988-1993 The Regents of the University of California.
|
|
|
|
* Copyright (c) 1994 Sun Microsystems, Inc.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software and its documentation for any purpose and without
|
|
|
|
* fee is hereby granted, provided that the above copyright
|
|
|
|
* notice appear in all copies. The University of California
|
|
|
|
* makes no representations about the suitability of this
|
|
|
|
* software for any purpose. It is provided "as is" without
|
|
|
|
* express or implied warranty.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* double(64bits) extended(80-bits) quadruple(128-bits)
|
|
|
|
* exponent 11 bits 15 bits 15 bits
|
|
|
|
* fraction 52 bits 63 bits 112 bits
|
|
|
|
* sign 1 bit 1 bit 1 bit
|
|
|
|
* integer 1 bit
|
|
|
|
*/
|
|
|
|
#define MAX_EXPONENT 511
|
|
|
|
|
|
|
|
qse_awk_flt_t awk_strtoflt (qse_awk_t* awk, const char_t* str)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Table giving binary powers of 10. Entry is 10^2^i.
|
|
|
|
* Used to convert decimal exponents into floating-point numbers.
|
|
|
|
*/
|
|
|
|
static qse_awk_flt_t powers_of_10[] =
|
|
|
|
{
|
|
|
|
10., 100., 1.0e4, 1.0e8, 1.0e16,
|
|
|
|
1.0e32, 1.0e64, 1.0e128, 1.0e256
|
|
|
|
};
|
|
|
|
|
|
|
|
qse_awk_flt_t fraction, dbl_exp, * d;
|
|
|
|
const char_t* p;
|
|
|
|
cint_t c;
|
|
|
|
int exp = 0; /* Exponent read from "EX" field */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exponent that derives from the fractional part. Under normal
|
|
|
|
* circumstatnces, it is the negative of the number of digits in F.
|
|
|
|
* However, if I is very long, the last digits of I get dropped
|
|
|
|
* (otherwise a long I with a large negative exponent could cause an
|
|
|
|
* unnecessary overflow on I alone). In this case, frac_exp is
|
|
|
|
* incremented one for each dropped digit.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int frac_exp;
|
|
|
|
int mant_size; /* Number of digits in mantissa. */
|
|
|
|
int dec_pt; /* Number of mantissa digits BEFORE decimal point */
|
|
|
|
const char_t *pexp; /* Temporarily holds location of exponent in string */
|
|
|
|
int negative = 0, exp_negative = 0;
|
|
|
|
|
|
|
|
p = str;
|
|
|
|
|
|
|
|
if (awk->opt.trait & QSE_AWK_STRIPSTRSPC)
|
|
|
|
{
|
|
|
|
/* strip off leading spaces */
|
|
|
|
while (AWK_ISSPACE(awk,*p)) p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for a sign */
|
|
|
|
while (*p != _T('\0'))
|
|
|
|
{
|
|
|
|
if (*p == _T('-'))
|
|
|
|
{
|
|
|
|
negative = ~negative;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
else if (*p == _T('+')) p++;
|
|
|
|
else break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Count the number of digits in the mantissa (including the decimal
|
|
|
|
* point), and also locate the decimal point. */
|
|
|
|
dec_pt = -1;
|
|
|
|
for (mant_size = 0; ; mant_size++)
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
if (!AWK_ISDIGIT(awk, c))
|
|
|
|
{
|
|
|
|
if ((c != _T('.')) || (dec_pt >= 0)) break;
|
|
|
|
dec_pt = mant_size;
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now suck up the digits in the mantissa. Use two integers to
|
|
|
|
* collect 9 digits each (this is faster than using floating-point).
|
|
|
|
* If the mantissa has more than 18 digits, ignore the extras, since
|
|
|
|
* they can't affect the value anyway.
|
|
|
|
*/
|
|
|
|
pexp = p;
|
|
|
|
p -= mant_size;
|
|
|
|
if (dec_pt < 0)
|
|
|
|
{
|
|
|
|
dec_pt = mant_size;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
mant_size--; /* One of the digits was the point */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_size > 18)
|
|
|
|
{
|
|
|
|
frac_exp = dec_pt - 18;
|
|
|
|
mant_size = 18;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
frac_exp = dec_pt - mant_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_size == 0)
|
|
|
|
{
|
|
|
|
fraction = 0.0;
|
|
|
|
/*p = str;*/
|
|
|
|
p = pexp;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int frac1, frac2;
|
|
|
|
frac1 = 0;
|
|
|
|
for ( ; mant_size > 9; mant_size--)
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
if (c == _T('.'))
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
frac1 = 10 * frac1 + (c - _T('0'));
|
|
|
|
}
|
|
|
|
frac2 = 0;
|
|
|
|
for (; mant_size > 0; mant_size--) {
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
if (c == _T('.'))
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
frac2 = 10*frac2 + (c - _T('0'));
|
|
|
|
}
|
|
|
|
fraction = (1.0e9 * frac1) + frac2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Skim off the exponent */
|
|
|
|
p = pexp;
|
|
|
|
if ((*p == _T('E')) || (*p == _T('e')))
|
|
|
|
{
|
|
|
|
p++;
|
|
|
|
if (*p == _T('-'))
|
|
|
|
{
|
|
|
|
exp_negative = 1;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (*p == _T('+')) p++;
|
|
|
|
exp_negative = 0;
|
|
|
|
}
|
|
|
|
if (!AWK_ISDIGIT(awk, *p))
|
|
|
|
{
|
|
|
|
/* p = pexp; */
|
|
|
|
/* goto done; */
|
|
|
|
goto no_exp;
|
|
|
|
}
|
|
|
|
while (AWK_ISDIGIT(awk, *p))
|
|
|
|
{
|
|
|
|
exp = exp * 10 + (*p - _T('0'));
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
no_exp:
|
|
|
|
if (exp_negative) exp = frac_exp - exp;
|
|
|
|
else exp = frac_exp + exp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate a floating-point number that represents the exponent.
|
|
|
|
* Do this by processing the exponent one bit at a time to combine
|
|
|
|
* many powers of 2 of 10. Then combine the exponent with the
|
|
|
|
* fraction.
|
|
|
|
*/
|
|
|
|
if (exp < 0)
|
|
|
|
{
|
|
|
|
exp_negative = 1;
|
|
|
|
exp = -exp;
|
|
|
|
}
|
|
|
|
else exp_negative = 0;
|
|
|
|
|
|
|
|
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
|
|
|
|
|
|
|
|
dbl_exp = 1.0;
|
|
|
|
|
|
|
|
for (d = powers_of_10; exp != 0; exp >>= 1, d++)
|
|
|
|
{
|
|
|
|
if (exp & 01) dbl_exp *= *d;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exp_negative) fraction /= dbl_exp;
|
|
|
|
else fraction *= dbl_exp;
|
|
|
|
|
|
|
|
done:
|
|
|
|
return (negative)? -fraction: fraction;
|
|
|
|
}
|
|
|
|
|
|
|
|
qse_awk_flt_t awk_strxtoflt (qse_awk_t* awk, const char_t* str, qse_size_t len, const char_t** endptr)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Table giving binary powers of 10. Entry is 10^2^i.
|
|
|
|
* Used to convert decimal exponents into floating-point numbers.
|
|
|
|
*/
|
|
|
|
static qse_awk_flt_t powers_of_10[] =
|
|
|
|
{
|
|
|
|
10., 100., 1.0e4, 1.0e8, 1.0e16,
|
|
|
|
1.0e32, 1.0e64, 1.0e128, 1.0e256
|
|
|
|
};
|
|
|
|
|
|
|
|
qse_awk_flt_t fraction, dbl_exp, * d;
|
|
|
|
const char_t* p, * end;
|
|
|
|
cint_t c;
|
|
|
|
int exp = 0; /* Exponent read from "EX" field */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exponent that derives from the fractional part. Under normal
|
|
|
|
* circumstatnces, it is the negative of the number of digits in F.
|
|
|
|
* However, if I is very long, the last digits of I get dropped
|
|
|
|
* (otherwise a long I with a large negative exponent could cause an
|
|
|
|
* unnecessary overflow on I alone). In this case, frac_exp is
|
|
|
|
* incremented one for each dropped digit.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int frac_exp;
|
|
|
|
int mant_size; /* Number of digits in mantissa. */
|
|
|
|
int dec_pt; /* Number of mantissa digits BEFORE decimal point */
|
|
|
|
const char_t *pexp; /* Temporarily holds location of exponent in string */
|
|
|
|
int negative = 0, exp_negative = 0;
|
|
|
|
|
|
|
|
p = str;
|
|
|
|
end = str + len;
|
|
|
|
|
|
|
|
/* Strip off leading blanks and check for a sign */
|
|
|
|
/*while (AWK_ISSPACE(awk,*p)) p++;*/
|
|
|
|
|
|
|
|
/*while (*p != _T('\0')) */
|
|
|
|
while (p < end)
|
|
|
|
{
|
|
|
|
if (*p == _T('-'))
|
|
|
|
{
|
|
|
|
negative = ~negative;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
else if (*p == _T('+')) p++;
|
|
|
|
else break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Count the number of digits in the mantissa (including the decimal
|
|
|
|
* point), and also locate the decimal point. */
|
|
|
|
dec_pt = -1;
|
|
|
|
/*for (mant_size = 0; ; mant_size++) */
|
|
|
|
for (mant_size = 0; p < end; mant_size++)
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
if (!AWK_ISDIGIT(awk, c))
|
|
|
|
{
|
|
|
|
if (c != _T('.') || dec_pt >= 0) break;
|
|
|
|
dec_pt = mant_size;
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now suck up the digits in the mantissa. Use two integers to
|
|
|
|
* collect 9 digits each (this is faster than using floating-point).
|
|
|
|
* If the mantissa has more than 18 digits, ignore the extras, since
|
|
|
|
* they can't affect the value anyway.
|
|
|
|
*/
|
|
|
|
pexp = p;
|
|
|
|
p -= mant_size;
|
|
|
|
if (dec_pt < 0)
|
|
|
|
{
|
|
|
|
dec_pt = mant_size;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
mant_size--; /* One of the digits was the point */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_size > 18) /* TODO: is 18 correct for qse_awk_flt_t??? */
|
|
|
|
{
|
|
|
|
frac_exp = dec_pt - 18;
|
|
|
|
mant_size = 18;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
frac_exp = dec_pt - mant_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_size == 0)
|
|
|
|
{
|
|
|
|
fraction = 0.0;
|
|
|
|
/*p = str;*/
|
|
|
|
p = pexp;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int frac1, frac2;
|
|
|
|
|
|
|
|
frac1 = 0;
|
|
|
|
for ( ; mant_size > 9; mant_size--)
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
if (c == _T('.'))
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
frac1 = 10 * frac1 + (c - _T('0'));
|
|
|
|
}
|
|
|
|
|
|
|
|
frac2 = 0;
|
|
|
|
for (; mant_size > 0; mant_size--) {
|
|
|
|
c = *p++;
|
|
|
|
if (c == _T('.'))
|
|
|
|
{
|
|
|
|
c = *p;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
frac2 = 10 * frac2 + (c - _T('0'));
|
|
|
|
}
|
|
|
|
fraction = (1.0e9 * frac1) + frac2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Skim off the exponent */
|
|
|
|
p = pexp;
|
|
|
|
if (p < end && (*p == _T('E') || *p == _T('e')))
|
|
|
|
{
|
|
|
|
p++;
|
|
|
|
|
|
|
|
if (p < end)
|
|
|
|
{
|
|
|
|
if (*p == _T('-'))
|
|
|
|
{
|
|
|
|
exp_negative = 1;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (*p == _T('+')) p++;
|
|
|
|
exp_negative = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else exp_negative = 0;
|
|
|
|
|
|
|
|
if (!(p < end && AWK_ISDIGIT(awk, *p)))
|
|
|
|
{
|
|
|
|
/*p = pexp;*/
|
|
|
|
/*goto done;*/
|
|
|
|
goto no_exp;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (p < end && AWK_ISDIGIT(awk, *p))
|
|
|
|
{
|
|
|
|
exp = exp * 10 + (*p - _T('0'));
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
no_exp:
|
|
|
|
if (exp_negative) exp = frac_exp - exp;
|
|
|
|
else exp = frac_exp + exp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate a floating-point number that represents the exponent.
|
|
|
|
* Do this by processing the exponent one bit at a time to combine
|
|
|
|
* many powers of 2 of 10. Then combine the exponent with the
|
|
|
|
* fraction.
|
|
|
|
*/
|
|
|
|
if (exp < 0)
|
|
|
|
{
|
|
|
|
exp_negative = 1;
|
|
|
|
exp = -exp;
|
|
|
|
}
|
|
|
|
else exp_negative = 0;
|
|
|
|
|
|
|
|
if (exp > MAX_EXPONENT) exp = MAX_EXPONENT;
|
|
|
|
|
|
|
|
dbl_exp = 1.0;
|
|
|
|
|
|
|
|
for (d = powers_of_10; exp != 0; exp >>= 1, d++)
|
|
|
|
{
|
|
|
|
if (exp & 01) dbl_exp *= *d;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exp_negative) fraction /= dbl_exp;
|
|
|
|
else fraction *= dbl_exp;
|
|
|
|
|
|
|
|
done:
|
|
|
|
if (endptr != QSE_NULL) *endptr = p;
|
|
|
|
return (negative)? -fraction: fraction;
|
|
|
|
}
|