hcl/lib/h2-scheme-bigint.adb
hyung-hwan 8ef3eabe78 added H2.Slim and Slim_Stream.
renamed Stream to Wide_Stream.
2014-03-26 14:28:41 +00:00

1325 lines
41 KiB
Ada

with H2.Pool;
separate (H2.Scheme)
-- The code here assumes that Half_Word_Slot'First is 1.
-- The code breaks if you change the array range to something else,
package body Bigint is
use type System.Bit_Order;
Big_Endian: constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.High_Order_First
);
Little_Endian: constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.Low_Order_First
);
--Half_Word_Bits: constant := Object_Pointer_Bits / 2;
Half_Word_Bits: constant := Object_Half_Word'Size;
Half_Word_Bytes: constant := Half_Word_Bits / System.Storage_Unit;
type Word_Record is record
Low: Object_Half_Word;
High: Object_Half_Word;
end record;
for Word_Record use record
--Low at 0 range 0 .. Half_Word_Bits - 1;
--High at 0 range Half_Word_Bits .. Word_Bits - 1;
Low at Half_Word_Bytes * (0 * Little_Endian + 1 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
High at Half_Word_Bytes * (1 * Little_Endian + 0 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
end record;
for Word_Record'Size use Object_Word'Size;
--for Word_Record'Size use Object_Pointer_Bits;
--for Word_Record'Alignment use Object_Word'Alignment;
--for Word_Record'Scalar_Storage_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.Low_Order_First;
type Half_Word_Bit_Array is array(1 .. Half_Word_Bits) of Object_Bit;
pragma Pack (Half_Word_Bit_Array);
for Half_Word_Bit_Array'Size use Half_Word_Bits;
type Block_Divisor_Record is record
Low: Object_Half_Word; -- low half-word of divisor
High: Object_Half_Word; -- high half-word of divisor
Length: Object_Size; -- number of digits
end record;
Block_Divisors: array (Object_Radix) of Block_Divisor_Record;
Block_Divisors_Initialized: Standard.Boolean := Standard.False;
-------------------------------------------------------------------------
function Get_Low (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.Low;
end Get_Low;
function Get_High (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.High;
end Get_High;
function Make_Word (L: in Object_Half_Word;
H: in Object_Half_Word) return Object_Word is
W: Object_Word;
R: Word_Record;
for R'Address use W'Address;
begin
R.Low := L;
R.High := H;
return W;
end Make_Word;
function Decode_To_Word (X: in Object_Pointer;
Word: access Object_Word;
Sign: access Object_Sign) return Standard.Boolean is
begin
if Is_Integer(X) then
declare
I: Object_Integer := Pointer_To_Integer(X);
begin
if I < 0 then
-- Convert the negative number to a positive word.
Word.all := Object_Word(-(I + 1)) + 1;
Sign.all := Negative_Sign;
else
Word.all := Object_Word(I);
Sign.all := Positive_Sign;
end if;
end;
else
case X.Size is
when 1 =>
Word.all := Object_Word(X.Half_Word_Slot(1));
when 2 =>
Word.all := Make_Word(X.Half_Word_Slot(1), X.Half_Word_Slot(2));
when others =>
return Standard.False;
end case;
Sign.all := X.Sign;
end if;
return Standard.True;
end Decode_To_Word;
procedure Convert_Word_To_Text (Word: in Object_Word;
Radix: in Object_Radix;
Buffer: in out Object_Character_Array;
Length: out Object_Size) is
V: Object_Word;
W: Object_Word := Word;
Len: Object_Size := 0;
begin
loop
V := W rem Object_Word(Radix);
if V in 0 .. 9 then
Buffer(Buffer'First + Len) := Object_Character'Val(Object_Character'Pos(Ch.Zero) + V);
else
Buffer(Buffer'First + Len) := Object_Character'Val(Object_Character'Pos(Ch.UC_A) + V - 10);
end if;
Len := Len + 1;
W := W / Object_Word(Radix);
exit when W <= 0;
end loop;
Length := Len;
end Convert_Word_To_Text;
-------------------------------------------------------------------------
function Is_Less_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size) return Standard.Boolean is
pragma Inline (Is_Less_Unsigned_Array);
begin
if XS /= YS then
return XS < YS;
end if;
for I in reverse 1 .. XS loop
if X(I) /= Y(I) then
return X(I) < Y(I);
end if;
end loop;
return Standard.False;
end Is_Less_Unsigned_Array;
function Is_Less_Unsigned (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_Less_Unsigned);
begin
return Is_Less_Unsigned_Array(X.Half_Word_Slot, X.Size, Y.Half_Word_Slot, Y.Size);
end Is_Less_Unsigned;
function Is_Less (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
if X.Sign /= Y.Sign then
return X.Sign = Negative_Sign;
end if;
return Is_Less_Unsigned(X, Y);
end Is_Less;
function Is_Equal (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
return X.Sign = Y.Sign and then
X.Size = Y.Size and then
X.Half_Word_Slot = Y.Half_Word_Slot;
end Is_Equal;
function Is_Zero (X: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_Zero);
begin
return X.Size = 1 and then X.Half_Word_Slot(1) = 0;
end Is_Zero;
function Is_One_Unsigned (X: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_One_Unsigned);
begin
return X.Size = 1 and then X.Half_Word_Slot(1) = 1;
end Is_One_Unsigned;
-------------------------------------------------------------------------
function Copy_Upto (Interp: access Interpreter_Record;
X: in Object_Pointer;
Last: in Half_Word_Object_Size) return Object_Pointer is
pragma Assert (Last <= X.Size);
A: aliased Object_Pointer := X;
Z: Object_Pointer;
begin
Push_Top (Interp.all, A'Unchecked_Access);
Z := Make_Bigint(Interp, Size => Last);
Pop_Tops (Interp.all, 1);
Z.Sign := A.Sign;
Z.Half_Word_Slot := A.Half_Word_Slot(1 .. Last);
return Z;
end Copy_Upto;
function Count_Effective_Array_Slots (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size) return Half_Word_Object_Size is
pragma Inline (Count_Effective_Array_Slots);
Last: Half_Word_Object_Size := 1;
begin
for I in reverse 1 .. XS loop
if X(I) /= 0 then
Last := I;
exit;
end if;
end loop;
return Last;
end Count_Effective_Array_Slots;
function Count_Effective_Slots (X: in Object_Pointer) return Half_Word_Object_Size is
pragma Inline (Count_Effective_Slots);
begin
return Count_Effective_Array_Slots(X.Half_Word_Slot, X.Size);
end Count_Effective_Slots;
function Normalize (Interp: access Interpreter_Record;
X: in Object_Pointer) return Object_Pointer is
Last: Half_Word_Object_Size;
begin
Last := Count_Effective_Slots(X);
case Last is
when 1 =>
if X.Sign = Negative_Sign then
return Integer_To_Pointer(-Object_Integer(X.Half_Word_Slot(1)));
else
return Integer_To_Pointer(Object_Integer(X.Half_Word_Slot(1)));
end if;
when 2 =>
declare
W: Object_Word := Make_Word(X.Half_Word_Slot(1), X.Half_Word_Slot(2));
begin
if X.Sign = Negative_Sign then
if W in 0 .. Object_Word(-Object_Signed_Word(Object_Integer'First)) then
return Integer_To_Pointer(-Object_Integer(W));
end if;
else
if W in 0 .. Object_Word(Object_Integer'Last) then
return Integer_To_Pointer(Object_Integer(W));
end if;
end if;
end;
when others =>
null;
end case;
if X.Size = Last then
-- No compaction is needed. return it as it is
return X;
end if;
-- Remove unneeded slots and clone meaningful contents only.
return Copy_Upto(Interp, X, Last);
end Normalize;
-------------------------------------------------------------------------
generic
with function Operator (X: in Object_Integer;
Y: in Object_Integer) return Object_Integer;
procedure Plain_Integer_Op (Interp: in out Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer);
procedure Plain_Integer_Op (Interp: in out Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
begin
if Is_Integer(A) and then Is_Integer(B) then
declare
--pragma Unsuppress (Range_Check);
--pragma Unsuppress (Overflow_Check);
G: Object_Integer := Pointer_To_Integer(A);
H: Object_Integer := Pointer_To_Integer(B);
begin
X := A;
Y := B;
Z := Integer_To_Pointer(Operator(G, H));
return;
exception
when Constraint_Error =>
-- TODO: don't count on Constraint_Error exception.
Push_Top (Interp, A'Unchecked_Access);
Push_Top (Interp, B'Unchecked_Access);
-- TODO: allocate A and B from a non-GC heap.
-- I know that pointers returned by Make_Bigint here are short-lived
-- and not needed after actual operation. non-GC heap is a better choice.
A := Make_Bigint(Interp.Self, Value => G);
B := Make_Bigint(Interp.Self, Value => H);
Pop_Tops (Interp, 2);
end;
else
Push_Top (Interp, A'Unchecked_Access);
Push_Top (Interp, B'Unchecked_Access);
if Is_Integer(A) then
A := Make_Bigint(Interp.Self, Value => Pointer_To_Integer(A));
end if;
if Is_Integer(B) then
B := Make_Bigint(Interp.Self, Value => Pointer_To_Integer(B));
end if;
Pop_Tops (Interp, 2);
end if;
X := A;
Y := B;
Z := null;
end Plain_Integer_Op;
procedure Add_Integers is new Plain_Integer_Op (Operator => "+");
procedure Subtract_Integers is new Plain_Integer_Op (Operator => "-");
procedure Multiply_Integers is new Plain_Integer_Op (Operator => "*");
procedure Divide_Integers is new Plain_Integer_Op (Operator => "/");
-------------------------------------------------------------------------
function Half_Word_Bit_Position (Pos: in Standard.Positive) return Standard.Natural is
pragma Inline (Half_Word_Bit_Position);
begin
return (Pos * Little_Endian) + ((Half_Word_Bits - Pos + 1) * Big_Endian);
end Half_Word_Bit_Position;
function Get_Half_Word_Bit (X: in Object_Half_Word;
Pos: in Standard.Positive) return Object_Bit is
pragma Inline (Get_Half_Word_Bit);
BA: Half_Word_Bit_Array;
for BA'Address use X'Address;
begin
return BA(Half_Word_Bit_Position(Pos));
end Get_Half_Word_Bit;
procedure Set_Half_Word_Bit (X: in out Object_Half_Word;
Pos: in Standard.Positive;
Bit: in Object_Bit) is
pragma Inline (Set_Half_Word_Bit);
BA: Half_Word_Bit_Array;
for BA'Address use X'Address;
begin
BA(Half_Word_Bit_Position(Pos)) := Bit;
end Set_Half_Word_Bit;
-------------------------------------------------------------------------
function Shift_Half_Word_Left (W: in Object_Half_Word;
Bits: in Standard.Natural) return Object_Half_Word is
pragma Inline (Shift_Half_Word_Left);
begin
--if Bits >= W'Size then
-- return 0;
--end if;
return W * (2 ** Bits);
end Shift_Half_Word_Left;
function Shift_Half_Word_Right (W: in Object_Half_Word;
Bits: in Standard.Natural) return Object_Half_Word is
pragma Inline (Shift_Half_Word_Right);
begin
if Bits >= W'Size then
-- prevent divide-by-zero in case 2 ** Bits becomes 0
-- for overflow.
return 0;
end if;
return W / (2 ** Bits);
end Shift_Half_Word_Right;
-------------------------------------------------------------------------
procedure Shift_Left_Unsigned_Array (X: in out Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Bits: in Object_Size) is
Word_Shifts: Object_Size; -- half-word shift count
Bit_Shifts: Standard.Natural; -- bit shift count
Bit_Shifts_Right: Standard.Natural;
SI: Half_Word_Object_Size;
begin
-- This function doesn't grow/shrink the array. Shifting is performed
-- within the given array size only.
-- Get how many half-words to shift.
Word_Shifts := Bits / Half_Word_Bits;
if Word_Shifts >= XS then
X(1 .. XS) := (others => 0);
return;
end if;
-- Get how many remaining bits to shift
Bit_Shifts := Standard.Natural(Bits rem Half_Word_Bits);
Bit_Shifts_Right := Half_Word_Bits - Bit_Shifts;
-- Shift words and bits
SI := XS - Word_Shifts;
X(XS) := Shift_Half_Word_Left(X(SI), Bit_Shifts);
for DI in reverse Object_Size(Word_Shifts) + 1 .. XS - 1 loop
SI := DI - Word_Shifts; -- Source Index
X(DI + 1) := X(DI + 1) or Shift_Half_Word_Right(X(SI), Bit_Shifts_Right);
X(DI) := Shift_Half_Word_Left(X(SI), Bit_Shifts);
end loop;
-- Fill the remaining part with zeros
X(1 .. Object_Size(Word_Shifts)) := (others => 0);
end Shift_Left_Unsigned_Array;
procedure Shift_Right_Unsigned_Array (X: in out Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Bits: in Object_Size) is
Word_Shifts: Object_Size; -- half-word shift count
Bit_Shifts: Standard.Natural; -- bit shift count
Bit_Shifts_Left: Standard.Natural;
SI: Half_Word_Object_Size;
begin
-- This function doesn't grow/shrink the array. Shifting is performed
-- within the given array size only.
-- Get how many half-words to shift.
Word_Shifts := Bits / Half_Word_Bits;
if Word_Shifts >= XS then
X(1 .. XS) := (others => 0);
return;
end if;
-- Get how many remaining bits to shift
Bit_Shifts := Standard.Natural(Bits rem Half_Word_Bits);
Bit_Shifts_Left := Half_Word_Bits - Bit_Shifts;
-- Shift words and bits
SI := 1 + Word_Shifts;
X(1) := Shift_Half_Word_Right(X(SI), Bit_Shifts);
for DI in 2 .. XS - 1 loop
SI := DI + Word_Shifts; -- Source Index
X(DI - 1) := X(DI - 1) or Shift_Half_Word_Right(X(SI), Bit_Shifts_Left);
X(DI) := Shift_Half_Word_Right(X(SI), Bit_Shifts);
end loop;
-- Fill the remaining part with zeros
X(XS - Half_Word_Object_Size(Word_Shifts) + 1 .. XS) := (others => 0);
end Shift_Right_Unsigned_Array;
-------------------------------------------------------------------------
procedure Add_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Z: in out Object_Half_Word_Array) is
pragma Inline (Add_Unsigned_Array);
pragma Assert (XS >= YS);
W: Object_Word;
Carry: Object_Half_Word := 0;
begin
for I in 1 .. YS loop
W := Object_Word(X(I)) + Object_Word(Y(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z(I) := Get_Low(W);
end loop;
for I in YS + 1 .. XS loop
W := Object_Word(X(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z(I) := Get_Low(W);
end loop;
Z(XS + 1) := Carry;
end Add_Unsigned_Array;
function Add_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
A, B: aliased Object_Pointer;
Z: Object_Pointer;
begin
if X.Size >= Y.Size then
A := X;
B := Y;
else
A := Y;
B := X;
end if;
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, A.Size + 1);
Pop_Tops (Interp.all, 2);
Add_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, Z.Half_Word_Slot);
return Z;
end Add_Unsigned;
procedure Subtract_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Z: in out Object_Half_Word_Array) is
W: Object_Word;
Borrowed_Word: constant Object_Word := Object_Word(Object_Half_Word'Last) + 1;
Borrow: Object_Half_Word := 0;
begin
pragma Assert (not Is_Less_Unsigned_Array(X, XS, Y, YS)); -- The caller must ensure that X >= Y
for I in 1 .. YS loop
W := Object_Word(Y(I)) + Object_Word(Borrow);
if Object_Word(X(I)) >= W then
Z(I) := X(I) - Object_Half_Word(W);
Borrow := 0;
else
Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - W);
Borrow := 1;
end if;
end loop;
for I in YS + 1 .. XS loop
if X(I) >= Borrow then
Z(I) := X(I) - Object_Half_Word(Borrow);
Borrow := 0;
else
Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - Object_Word(Borrow));
Borrow := 1;
end if;
end loop;
pragma Assert (Borrow = 0);
end Subtract_Unsigned_Array;
function Subtract_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
pragma Inline (Subtract_Unsigned);
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Z: Object_Pointer;
begin
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, A.Size); -- Assume X.Size >= Y.Size.
Pop_Tops (Interp.all, 2);
Subtract_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_SLot, B.Size, Z.Half_Word_Slot);
return Z;
end Subtract_Unsigned;
procedure Multiply_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Z: in out Object_Half_Word_Array) is
W: Object_Word;
Low, High: Object_Half_Word;
Carry: Object_Half_Word;
Index: Half_Word_Object_Size;
begin
for I in 1 .. YS loop
if Y(I) = 0 then
Z(XS + I) := 0;
else
Carry := 0;
for J in 1 .. XS loop
W := Object_Word(X(J)) * Object_Word(Y(I));
Low := Get_Low(W);
High := Get_High(W);
Low := Low + Carry;
if Low < Carry then
High := High + 1;
end if;
Index := J + I - 1;
Low := Low + Z(Index);
if Low < Z(Index) then
High := High + 1;
end if;
Z(Index) := Low;
Carry := High;
end loop;
Z(XS + I) := Carry;
end if;
end loop;
end Multiply_Unsigned_Array;
function Multiply_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
pragma Inline (Multiply_Unsigned);
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Z: Object_Pointer;
begin
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, A.Size + B.Size);
Pop_Tops (Interp.all, 2);
Multiply_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, Z.Half_Word_Slot);
return Z;
end Multiply_Unsigned;
procedure Divide_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in out Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Q: in out Object_Half_Word_Array;
R: in out Object_Half_Word_Array) is
Bits: constant Object_Size := XS * Half_Word_Bits;
Word_Pos: Object_Size;
Bit_Pos: Standard.Positive;
RS: Half_Word_Object_Size;
begin
-- Perform binary long division.
-- http://en.wikipedia.org/wiki/Division_algorithm
--Q := 0 initialize quotient and remainder to zero
--R := 0
--for i = n-1...0 do where n is number of bits in N
-- R := R << 1 left-shift R by 1 bit
-- R(0) := X(i) set the least-significant bit of R equal to bit i of the numerator
-- if R >= Y then
-- R = R - Y
-- Q(i) := 1
-- end
--end
Q := (others => 0);
R := (others => 0);
for I in reverse 1 .. Bits loop
Word_Pos := (I - 1) / Half_Word_Bits + 1;
Bit_Pos := Standard.Positive((I - 1) rem Half_Word_Bits + 1);
Shift_Left_Unsigned_Array (R, XS, 1);
Set_Half_Word_Bit (R(1), 1, Get_Half_Word_Bit(X(Word_Pos), Bit_Pos));
RS := Count_Effective_Array_Slots (R, XS);
if not Is_Less_Unsigned_Array(R, RS, Y, YS) then
Subtract_Unsigned_Array (R, RS, Y, YS, R);
Set_Half_Word_Bit (Q(Word_Pos), Bit_Pos, 1);
end if;
end loop;
end Divide_Unsigned_Array;
procedure Divide_Unsigned (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Q: out Object_Pointer;
R: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
C: aliased Object_Pointer;
D: aliased Object_Pointer;
begin
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
Push_Top (Interp, A'Unchecked_Access);
Push_Top (Interp, B'Unchecked_Access);
Push_Top (Interp, C'Unchecked_Access);
Push_Top (Interp, D'Unchecked_Access);
C := Make_Bigint(Interp.Self, Size => A.Size);
D := Make_Bigint(Interp.Self, Size => A.Size);
Pop_Tops (Interp, 4);
Divide_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, C.Half_Word_Slot, D.Half_Word_Slot);
Q := C;
R := D;
end Divide_Unsigned;
procedure Divide_Unsigned_2 (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Q: out Object_Pointer;
R: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Quo: aliased Object_Pointer;
Dend: aliased Object_Pointer; -- Dividend
Sor: aliased Object_Pointer; -- Divisor
Tmp: Object_Pointer;
Diff: Half_Word_Object_Size;
Dend_Size: Half_Word_Object_Size;
Sor_Size: Half_Word_Object_Size;
Tmp_Size: Half_Word_Object_Size;
Cand_W: Object_Word;
Cand: Object_Half_Word_Array (1 .. 2);
Cand_Size: Half_Word_Object_Size;
begin
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
Push_Top (Interp, A'Unchecked_Access);
Push_Top (Interp, B'Unchecked_Access);
Push_Top (Interp, Quo'Unchecked_Access);
Push_Top (Interp, Dend'Unchecked_Access);
Push_Top (Interp, Sor'Unchecked_Access);
Quo := Make_Bigint (Interp.Self, A.Size);
Dend := Make_Bigint (Interp.Self, A.Size);
Sor := Make_Bigint (Interp.Self, A.Size);
Tmp := Make_Bigint (Interp.Self, A.Size + 2); -- Is it enough? A.Size + B.Size is safer
Pop_Tops (Interp, 5);
Dend_Size := A.Size;
Sor_Size := A.Size;
Diff := A.Size - B.Size;
Dend.Half_Word_Slot := A.Half_Word_Slot;
Sor.Half_Word_Slot(1 + Diff .. B.Size + Diff) := B.Half_Word_Slot;
for I in reverse B.Size .. A.Size loop
-- TODO: Optimize the alogrighm further. the adjustment loop may take very long.
if not Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Sor.Half_Word_Slot, Sor_Size) then
if Dend_Size > Sor_Size then
-- Take the 2 high digits from the dividend and
-- the highest digit from the divisor and guess the quotient digits.
Cand_W := Make_Word(Dend.Half_Word_Slot(Dend_Size - 1), Dend.Half_Word_Slot(Dend_Size));
Cand_W := Cand_W / Object_Word(Sor.Half_Word_Slot(Sor_Size));
Cand(1) := Get_Low(Cand_W);
Cand(2) := Get_High(Cand_W);
if Cand(2) > 0 then
Cand_Size := 2;
else
Cand_Size := 1;
end if;
else
-- Take the highest digit from the dividend and the divisor
-- and guess the quotient digit.
Cand(1) := Dend.Half_Word_Slot(Dend_Size) / Sor.Half_Word_Slot(Sor_Size);
Cand_Size := 1;
end if;
-- Multiply the divisor and the quotient candidate.
Tmp.Half_Word_Slot := (others => 0);
Multiply_Unsigned_Array (Cand, Cand_Size, Sor.Half_Word_Slot, Sor_Size, Tmp.Half_Word_Slot);
Tmp_Size := Count_Effective_Slots(Tmp);
-- Adjust down the guess while the dividend is less than the multiplication result.
while Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size) loop
Cand(1) := Cand(1) - 1;
-- Tmp := Tmp - Divisor
Subtract_Unsigned_Array (Tmp.Half_Word_Slot, Tmp_Size, Sor.Half_Word_Slot, Sor_Size, Tmp.Half_Word_Slot);
Tmp_Size := Count_Effective_Slots(Tmp);
end loop;
-- Set the guess to the quotient.
Quo.Half_Word_Slot(I - B.Size + 1) := Cand(1);
-- Dividend := Dividend - Tmp
Subtract_Unsigned_Array (Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size, Dend.Half_Word_Slot);
Dend_Size := Count_Effective_Slots(Dend);
end if;
-- Shift the divisor right by 1 slot
pragma Assert (I = Sor_Size);
Sor_Size := Sor_Size - 1;
Sor.Half_Word_Slot(1 .. Sor_Size) := Sor.Half_Word_Slot(2 .. I);
Sor.Half_Word_Slot(I) := 0;
end loop;
Q := Quo;
R := Dend;
end Divide_Unsigned_2;
-------------------------------------------------------------------------
procedure Add (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Z: out Object_Pointer) is
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Add_Integers (Interp, A, B, Z);
if Z = null then
if A.Sign /= B.Sign then
if A.Sign = Negative_Sign then
Subtract (Interp, B, A, Z);
else
Subtract (Interp, A, B, Z);
end if;
else
Sign := A.Sign;
Z := Add_Unsigned (Interp.Self, A, B);
Z.Sign := Sign;
end if;
Z := Normalize(Interp.Self, Z);
end if;
end Add;
procedure Subtract (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Z: out Object_Pointer) is
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Subtract_Integers (Interp, A, B, Z);
if Z = null then
if A.Sign /= B.Sign then
Sign := A.Sign;
Z := Add_Unsigned(Interp.Self, A, B);
Z.Sign := Sign;
else
if Is_Less_Unsigned(A, B) then
Sign := Object_Sign'Val(Object_Bit(Object_Sign'Pos(A.Sign)) + 1); -- opposite A.Sign
Z := Subtract_Unsigned(Interp.Self, B, A);
Z.Sign := Sign;
else
Sign := A.Sign;
Z := Subtract_Unsigned(Interp.Self, A, B);
Z.Sign := Sign;
end if;
end if;
Z := Normalize(Interp.Self, Z);
end if;
end Subtract;
procedure Multiply (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Z: out Object_Pointer) is
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Multiply_Integers (Interp, A, B, Z);
if Z = null then
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Z := Multiply_Unsigned (Interp.Self, A, B);
Z.Sign := Sign;
Z := Normalize(Interp.Self, Z);
end if;
end Multiply;
procedure Divide (Interp: in out Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Q: out Object_Pointer;
R: out Object_Pointer) is
A: Object_Pointer := X;
B: Object_Pointer := Y;
C: aliased Object_Pointer;
D: aliased Object_Pointer;
Sign: Object_Sign;
begin
if (Is_Integer(Y) and then Pointer_To_Integer(Y) = 0) or else
(Is_Bigint(Y) and then Is_Zero(Y)) then
raise Divide_By_Zero_Error;
end if;
Divide_Integers (Interp, A, B, Q);
if Q /= null then
-- Remainder operation must succeed if division was ok.
R := Integer_To_Pointer(Pointer_To_Integer(A) rem Pointer_To_Integer(B));
return;
end if;
if Is_Equal(A, B) then
Q := Integer_To_Pointer(1);
R := Integer_To_Pointer(0);
return;
elsif Is_Less_Unsigned(A, B) then
Q := Integer_To_Pointer(0);
R := A;
return;
end if;
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Divide_Unsigned (Interp, A, B, C, D);
C.Sign := Sign;
D.Sign := Sign;
Push_Top (Interp, C'Unchecked_Access);
Push_Top (Interp, D'Unchecked_Access);
C := Normalize(Interp.Self, C);
D := Normalize(Interp.Self, D);
Pop_Tops (Interp, 2);
Q := C;
R := D;
end Divide;
-------------------------------------------------------------------------
function Compare_Bigint_And_Bigint (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Integer is
begin
if Is_Equal(X, Y) then
return 0;
elsif Is_Less(X, Y) then
return -1;
else
return 1;
end if;
end Compare_Bigint_And_Bigint;
function Compare_Bigint_And_Integer (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Integer is
YW: Object_Word := Object_Word(Pointer_To_Integer(Y));
Size: Object_Size;
begin
if YW > Object_Word(Object_Half_Word'Last) then
Size := 2;
else
Size := 1;
end if;
declare
YY: aliased Object_Record (Kind => Half_Word_Object, Size => Size);
begin
YY.Tag := Bigint_Object;
YY.Half_Word_Slot(1) := Get_Low(YW);
if YY.Size >= 2 then
YY.Half_Word_Slot(2) := Get_High(YW);
end if;
return Compare_Bigint_And_Bigint (Interp, X, YY'Unchecked_Access);
end;
end Compare_Bigint_And_Integer;
function Compare (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Integer is
begin
if Is_Bigint(X) then
if Is_Bigint(Y) then
return Compare_Bigint_And_Bigint (Interp, X, Y);
else
return Compare_Bigint_And_Integer (Interp, X, Y);
end if;
else
if Is_Bigint(Y) then
return -Compare_Bigint_And_Integer (Interp, Y, X);
else
if Pointer_To_Integer(X) = Pointer_To_Integer(Y) then
return 0;
elsif Pointer_To_Integer(X) < Pointer_To_Integer(Y) then
return -1;
else
return 1;
end if;
end if;
end if;
end Compare;
-------------------------------------------------------------------------
function To_String (Interp: access Interpreter_Record;
X: in Object_Pointer;
Radix: in Object_Radix) return Object_Pointer is
W: aliased Object_Word;
Sign: aliased Object_Sign;
begin
-- Perform simple conversion if the object can be decoded
-- to a single word.
if Decode_To_Word(X, W'Access, Sign'Access) then
declare
-- Use a static buffer for simple conversion as the largest
-- size is known. The largest buffer is required for radix 2.
-- For a binary conversion(radix 2), the number of bits is
-- the maximum number of digits that can be produced. +1 is
-- needed for the sign.
Buf: Object_Character_Array (1 .. Object_Word'Size + 1);
Len: Object_Size;
begin
Convert_Word_To_Text (W, Radix, Buf, Len);
if Sign = Negative_Sign then
Len := Len + 1;
Buf(Len) := Ch.Minus_Sign;
end if;
return Make_String(Interp, Source => Buf(1 .. Len), Invert => Standard.True);
end;
end if;
-- Otherwise, do it in a hard way.
declare
B: aliased Object_Record (Kind => Half_Word_Object, Size => 2);
A: aliased Object_Pointer;
R: aliased Object_Pointer;
Q: aliased Object_Pointer;
Z: Object_Pointer;
-- TODO: optimize the buffer size depending on the radix value.
subtype Static_Buffer is Object_Character_Array (1 .. 16 * Half_Word_Bits + 1);
subtype Dynamic_Buffer is Object_Character_Array (1 .. X.Size * Half_Word_Bits + 1);
type Static_Buffer_Pointer is access all Static_Buffer;
type Dynamic_Buffer_Pointer is access all Dynamic_Buffer;
package Pool is new H2.Pool (Dynamic_Buffer, Dynamic_Buffer_Pointer, Interp.Storage_Pool);
Static_Buf: aliased Static_Buffer;
Dynamic_Buf: Dynamic_Buffer_Pointer;
Buf: Thin_Object_Character_Array_Pointer;
Totlen: Object_Size := 0; -- Length of total conversion
Seglen: Object_Size; -- Length of each word conversion
AS: Half_Word_Object_Size;
-- BD is the largest multiple of Radix that is less than or
-- equal to Object_Word'Last.
--BD: constant Block_Divisor_Record := Get_Block_Divisor(Radix);
BD: Block_Divisor_Record renames Block_Divisors(Radix);
begin
if X.Size <= 16 then
declare
function Conv is new Ada.Unchecked_Conversion (Static_Buffer_Pointer, Thin_Object_Character_Array_Pointer);
begin
Buf := Conv(Static_Buf'Access);
end;
else
-- TODO: move this dynamic buffer to Interpreter_Record and let it sustained during the lifetime of Interpreer
declare
function Conv is new Ada.Unchecked_Conversion (Dynamic_Buffer_Pointer, Thin_Object_Character_Array_Pointer);
begin
Dynamic_Buf := Pool.Allocate;
Buf := Conv(Dynamic_Buf);
end;
end if;
-- Create a block divisor object.
B.Tag := Bigint_Object;
B.Half_Word_Slot := (1 => BD.Low, 2 => BD.High);
Push_Top (Interp.all, Q'Unchecked_Access);
Push_Top (Interp.all, R'Unchecked_Access);
Push_Top (Interp.all, A'Unchecked_Access);
-- Clone the value to convert
A := Copy_Upto(Interp, X, X.Size);
-- Remember the sign to produce the sign symbol later
Sign := A.Sign;
A.Sign := Positive_Sign;
AS := A.Size;
Q := Make_Bigint(Interp, Size => A.Size);
R := Make_Bigint(Interp, Size => A.Size);
loop
-- Get a word block to convert
if Is_Less_Unsigned_Array (B.Half_Word_Slot, B.Size, A.Half_Word_Slot, AS) then
Divide_Unsigned_Array (A.Half_Word_Slot, AS, B.Half_Word_Slot, B.Size, Q.Half_Word_Slot, R.Half_Word_Slot);
A.Half_Word_Slot := Q.Half_Word_Slot;
AS := Count_Effective_Slots(A);
else
R := A; -- The last block
end if;
-- Translate up to 2 half-words to a full word.
if R.Size = 1 then
W := Object_Word(R.Half_Word_Slot(1));
else
W := Make_Word(R.Half_Word_Slot(1), R.Half_Word_Slot(2));
end if;
Convert_Word_To_Text (W, Radix, Buf(Totlen + 1 .. Buf'Last), Seglen);
Totlen := Totlen + Seglen;
exit when R = A; -- Reached the last block
-- Fill unfilled leading digits with zeros if it's not the last block
--for I in Seglen + 1 .. Block_Divisors(Radix).Length loop
for I in Seglen + 1 .. BD.Length loop
Totlen := Totlen + 1;
Buf(Totlen) := Object_Character'Val(Object_Character'Pos(Ch.Zero));
end loop;
end loop;
Pop_Tops (Interp.all, 3);
if Sign = Negative_Sign then
Totlen := Totlen + 1;
Buf(Totlen) := Ch.Minus_Sign;
end if;
Z := Make_String(Interp.Self, Source => Buf(1 .. Totlen), Invert => Standard.True);
-- TODO: Move dynamic_buf to interpreter_Record.
if Dynamic_Buf /= null then
Pool.Deallocate (Dynamic_Buf);
end if;
return Z;
exception
when others =>
if Dynamic_Buf /= null then
Pool.Deallocate (Dynamic_Buf);
end if;
raise;
end;
end To_String;
function From_String (Interp: access Interpreter_Record;
X: in Object_Character_Array;
Radix: in Object_Radix) return Object_Pointer is
function Get_Digit_Value (C: in Object_Character) return Object_Integer is
Pos: Object_Integer;
begin
Pos := Object_Character'Pos(C);
case Pos is
when Ch.Pos.Zero .. Ch.Pos.Nine =>
Pos := Pos - Ch.Pos.Zero;
when Ch.Pos.LC_A .. Ch.Pos.LC_Z =>
Pos := Pos - Ch.Pos.LC_A + 10;
when Ch.Pos.UC_A .. Ch.Pos.UC_Z =>
Pos := Pos - Ch.Pos.UC_A + 10;
when others =>
Pos := -1;
end case;
if Pos not in 0 .. Object_Integer(Radix) - 1 then
raise Numeric_String_Error;
end if;
return Pos;
end Get_Digit_Value;
Sign: Object_Sign;
Idx: Object_Size;
W: Object_Word;
BDLen: Object_Size renames Block_Divisors(Radix).Length;
NDigits: Object_Size;
B: Object_Pointer;
begin
-- Find the first digit while remembering the sign
Sign := Positive_Sign;
Idx := X'First;
if Idx <= X'Last then
if X(Idx) = Ch.Plus_Sign then
Idx := Idx + 1;
elsif X(Idx) = Ch.Minus_Sign then
Idx := Idx + 1;
Sign := Negative_Sign;
end if;
end if;
pragma Assert (Idx <= X'Last); -- the caller ensure at least 1 digit
if Idx > X'Last then
-- No digits in the string.
--return Integer_To_Pointer(0);
raise Numeric_String_Error;
end if;
-- Find the first non-zero digit
while Idx <= X'Last loop
exit when X(Idx) /= Ch.Zero;
Idx := Idx + 1;
end loop;
if Idx > X'Last then
-- All digits are zeros.
return Integer_To_Pointer(0);
end if;
NDigits := X'Last - Idx + 1; -- number of effective digits
-- Attempt to perform conversion within the range of Object_Integer.
declare
--pragma Unsuppress (Range_Check);
--pragma Unsuppress (Overflow_Check);
V1, V2: Object_Word;
I: Object_Integer;
begin
W := 0;
while Idx <= X'Last loop
V1 := W * Radix;
if V1 / Radix /= W then
-- Overflow
goto Huge;
end if;
V2 := V1 + Object_Word(Get_Digit_Value(X(Idx)));
if V2 > Object_Word(Object_Integer'Last) or else V2 < V1 then
-- Overflow
goto Huge;
end if;
W := V2;
Idx := Idx + 1;
end loop;
-- Processed all digits. The value can fit
-- into an Object_Integer.
I := Object_Integer(W);
--I := 0;
--while Idx <= X'Last loop
-- begin
-- I := I * Object_Integer(Radix) + Get_Digit_Value(X(Idx));
-- exception
-- when Constraint_Error =>
-- W := Object_Word(I);
-- goto Huge;
-- end;
-- Idx := Idx + 1;
--end loop;
if Sign = Negative_Sign then
I := -I;
end if;
return Integer_To_Pointer(I);
end;
<<Huge>>
-- TODO: Optimizations if Radix 2, 4, 16. For there radix, conversion can be done in chunk.
-- The input string is too large to be converted to an Object_Integer.
B := Make_Bigint(Interp, Size => ((NDigits + BDLen - 1) / BDLen) * 2 + 1); -- TODO: is it the right size?
declare
C: Object_Pointer;
RB: aliased Object_Record (Kind => Half_Word_Object, Size => 1);
begin
RB.Tag := Bigint_Object;
RB.Half_Word_Slot(1) := Object_Half_Word(Radix);
C := Make_Bigint(Interp, Size => B.Size);
B.Half_Word_Slot(1) := Get_Low(W);
B.Half_Word_Slot(2) := Get_High(W);
while Idx <= X'Last loop
declare
DVB: aliased Object_Record (Kind => Half_Word_Object, Size => 1);
begin
DVB.Tag := Bigint_Object;
DVB.Half_Word_Slot(1) := Object_Half_Word(Get_Digit_Value(X(Idx)));
Multiply_Unsigned_Array (B.Half_Word_Slot, Count_Effective_Array_Slots(B.Half_Word_Slot, B.Size), RB.Half_Word_Slot, RB.Size, C.Half_Word_Slot);
B.Half_Word_Slot := (others => 0);
Add_Unsigned_Array (C.Half_Word_Slot, Count_Effective_Array_Slots(C.Half_Word_Slot, B.Size), DVB.Half_Word_Slot, DVB.Size, B.Half_Word_Slot);
C.Half_Word_Slot := (others => 0);
end;
Idx := Idx + 1;
end loop;
end;
B.Sign := Sign;
return Normalize(Interp.Self, B);
end From_String;
-------------------------------------------------------------------------
function Get_Block_Divisor (Radix: in Object_Radix) return Block_Divisor_Record is
V, W: Object_Word;
Len: Object_Size;
begin
-- Get the largest multiples of Radix that can be represented
-- in a single Object_Word.
Len := 1;
W := Object_Word(Radix);
loop
V := W * Object_Word(Radix);
exit when V / Object_Word(Radix) /= W; -- Overflow
Len := Len + 1;
W := V;
end loop;
return (Low => Get_Low(W), High => Get_High(W), Length => Len);
end Get_Block_Divisor;
procedure Initialize is
begin
-- Initialize block divisors table
if not Block_Divisors_Initialized then
for Radix in Object_Radix'Range loop
Block_Divisors(Radix) := Get_Block_Divisor(Radix);
end loop;
Block_Divisors_Initialized := Standard.True;
end if;
end Initialize;
begin
Initialize;
end Bigint;