hcl/lib/h2-scheme-bigint.adb

664 lines
20 KiB
Ada

with H2.Pool;
separate (H2.Scheme)
package body Bigint is
use type System.Bit_Order;
Big_Endian : constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.High_Order_First
);
Little_Endian : constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.Low_Order_First
);
--Half_Word_Bits: constant := Object_Pointer_Bits / 2;
Half_Word_Bits: constant := Object_Half_Word'Size;
Half_Word_Bytes: constant := Half_Word_Bits / System.Storage_Unit;
type Word_Record is record
Low: Object_Half_Word;
High: Object_Half_Word;
end record;
for Word_Record use record
--Low at 0 range 0 .. Half_Word_Bits - 1;
--High at 0 range Half_Word_Bits .. Word_Bits - 1;
Low at Half_Word_Bytes * (0 * Little_Endian + 1 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
High at Half_Word_Bytes * (1 * Little_Endian + 0 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
end record;
for Word_Record'Size use Object_Word'Size;
--for Word_Record'Size use Object_Pointer_Bits;
--for Word_Record'Alignment use Object_Word'Alignment;
--for Word_Record'Scalar_Storage_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.Low_Order_First;
-----------------------------------------------------------------------------
function Get_Low (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.Low;
end Get_Low;
function Get_High (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.High;
end Get_High;
function Make_Word (L: in Object_Half_Word;
H: in Object_Half_Word) return Object_Word is
W: Object_Word;
R: Word_Record;
for R'Address use W'Address;
begin
R.Low := L;
R.High := H;
return W;
end Make_Word;
-----------------------------------------------------------------------------
function Is_Less_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size) return Standard.Boolean is
pragma Inline (Is_Less_Unsigned_Array);
begin
if XS /= YS then
return XS < YS;
end if;
for I in reverse X'Range loop
if X(I) /= Y(I) then
return X(I) < Y(I);
end if;
end loop;
return Standard.False;
end Is_Less_Unsigned_Array;
function Is_Less_Unsigned (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_Less_Unsigned);
begin
return Is_Less_Unsigned_Array (X.Half_Word_Slot, X.Size, Y.Half_Word_Slot, Y.Size);
end Is_Less_Unsigned;
function Is_Less (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
if X.Sign /= Y.Sign then
return X.Sign = Negative_Sign;
end if;
return Is_Less_Unsigned(X, Y);
end Is_Less;
function Is_Equal (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
return X.Sign = Y.Sign and then
X.Size = Y.Size and then
X.Half_Word_Slot = Y.Half_Word_Slot;
end Is_Equal;
function Is_Zero (X: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_Zero);
begin
return X.Size = 1 and then X.Half_Word_Slot(1) = 0;
end Is_Zero;
function Is_One_Unsigned (X: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_One_Unsigned);
begin
return X.Size = 1 and then X.Half_Word_Slot(1) = 1;
end Is_One_Unsigned;
-----------------------------------------------------------------------------
function Copy_Upto (Interp: access Interpreter_Record;
X: in Object_Pointer;
Last: in Half_Word_Object_Size) return Object_Pointer is
pragma Assert (Last < X.Size);
A: aliased Object_Pointer := X;
Z: Object_Pointer;
begin
Push_Top (Interp.all, A'Unchecked_Access);
Z := Make_Bigint(Interp, Size => Last);
Pop_Tops (Interp.all, 1);
Z.Sign := A.Sign;
Z.Half_Word_Slot := A.Half_Word_Slot(1 .. Last);
return Z;
end Copy_Upto;
function Count_Effective_Slots (X: in Object_Pointer) return Half_Word_Object_Size is
pragma Inline (Count_Effective_Slots);
Last: Half_Word_Object_Size := 1;
begin
for I in reverse 1 .. X.Size loop
if X.Half_Word_Slot(I) /= 0 then
Last := I;
exit;
end if;
end loop;
return Last;
end Count_Effective_Slots;
function Normalize (Interp: access Interpreter_Record;
X: in Object_Pointer) return Object_Pointer is
Last: Half_Word_Object_Size;
begin
Last := Count_Effective_Slots(X);
case Last is
when 1 =>
if X.Sign = Negative_Sign then
return Integer_To_Pointer(-Object_Integer(X.Half_Word_Slot(1)));
else
return Integer_To_Pointer(Object_Integer(X.Half_Word_Slot(1)));
end if;
when 2 =>
declare
W: Object_Word := Make_Word (X.Half_Word_Slot(1), X.Half_Word_Slot(2));
begin
if X.Sign = Negative_Sign then
if W in 0 .. Object_Word(-Object_Signed_Word(Object_Integer'First)) then
return Integer_To_Pointer(-Object_Integer(W));
end if;
else
if W in 0 .. Object_Word(Object_Integer'Last) then
return Integer_To_Pointer(Object_Integer(W));
end if;
end if;
end;
when others =>
null;
end case;
if X.Size = Last then
-- No compaction is needed. return it as it is
return X;
end if;
-- Remove unneeded slots and clone meaningful contents only.
return Copy_Upto(Interp, X, Last);
end Normalize;
-----------------------------------------------------------------------------
generic
with function Operator (X: in Object_Integer;
Y: in Object_Integer) return Object_Integer;
procedure Plain_Integer_Op (Interp: access Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer);
procedure Plain_Integer_Op (Interp: access Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
begin
if Is_Integer(A) and then Is_Integer(B) then
declare
G: Object_Integer := Pointer_To_Integer(A);
H: Object_Integer := Pointer_To_Integer(B);
begin
X := A;
Y := B;
Z := Integer_To_Pointer(Operator(G, H));
return;
exception
when Constraint_Error =>
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
-- TODO: allocate A and B from a non-GC heap.
-- I know that pointers returned by Make_Bigint here are short-lived
-- and not needed after actual operation. non-GC heap is a better choice.
A := Make_Bigint(Interp, Value => G);
B := Make_Bigint(Interp, Value => H);
Pop_Tops (Interp.all, 2);
end;
else
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
if Is_Integer(A) then
A := Make_Bigint(Interp, Value => Pointer_To_Integer(A));
end if;
if Is_Integer(B) then
B := Make_Bigint(Interp, Value => Pointer_To_Integer(B));
end if;
Pop_Tops (Interp.all, 2);
end if;
X := A;
Y := B;
Z := null;
end Plain_Integer_Op;
procedure Add_Integers is new Plain_Integer_Op (Operator => "+");
procedure Subtract_Integers is new Plain_Integer_Op (Operator => "-");
procedure Multiply_Integers is new Plain_Integer_Op (Operator => "*");
procedure Divide_Integers is new Plain_Integer_Op (Operator => "/");
-----------------------------------------------------------------------------
function Add_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
A, B: aliased Object_Pointer;
Z: Object_Pointer;
W: Object_Word;
Carry: Object_Half_Word := 0;
Last: Half_Word_Object_Size;
begin
if X.Size >= Y.Size then
A := X;
B := Y;
Last := X.Size + 1;
else
A := Y;
B := X;
Last := Y.Size + 1;
end if;
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, Last);
Pop_Tops (Interp.all, 2);
for I in 1 .. B.Size loop
W := Object_Word(A.Half_Word_Slot(I)) + Object_Word(B.Half_Word_Slot(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z.Half_Word_Slot(I) := Get_Low(W);
end loop;
for I in B.Size + 1 .. A.Size loop
W := Object_Word(A.Half_Word_Slot(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z.Half_Word_Slot(I) := Get_Low(W);
end loop;
Z.Half_Word_Slot(Last) := Carry;
return Z;
end Add_Unsigned;
procedure Subtract_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Z: in out Object_Half_Word_Array) is
W: Object_Word;
Borrowed_Word: constant Object_Word := Object_Word(Object_Half_Word'Last) + 1;
Borrow: Object_Half_Word := 0;
begin
for I in 1 .. YS loop
W := Object_Word(Y(I)) + Object_Word(Borrow);
if Object_Word(X(I)) >= W then
Z(I) := X(I) - Object_Half_Word(W);
Borrow := 0;
else
Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - W);
Borrow := 1;
end if;
end loop;
for I in YS + 1 .. XS loop
if X(I) >= Borrow then
Z(I) := X(I) - Object_Half_Word(Borrow);
Borrow := 0;
else
Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - Object_Word(Borrow));
Borrow := 1;
end if;
end loop;
pragma Assert (Borrow = 0);
end Subtract_Unsigned_Array;
function Subtract_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
pragma Inline (Subtract_Unsigned);
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Z: Object_Pointer;
W: Object_Word;
Borrowed_Word: constant Object_Word := Object_Word(Object_Half_Word'Last) + 1;
Borrow: Object_Half_Word := 0;
begin
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, A.Size); -- Assume X.Size >= Y.Size.
Pop_Tops (Interp.all, 2);
Subtract_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_SLot, B.Size, Z.Half_Word_Slot);
return Z;
end Subtract_Unsigned;
procedure Multiply_Unsigned_Array (X: in Object_Half_Word_Array;
XS: in Half_Word_Object_Size;
Y: in Object_Half_Word_Array;
YS: in Half_Word_Object_Size;
Z: in out Object_Half_Word_Array) is
W: Object_Word;
Low, High: Object_Half_Word;
Carry: Object_Half_Word;
Index: Half_Word_Object_Size;
begin
for I in 1 .. YS loop
if Y(I) = 0 then
Z(XS + I) := 0;
else
Carry := 0;
for J in 1 .. XS loop
W := Object_Word(X(J)) * Object_Word(Y(I));
Low := Get_Low(W);
High := Get_High(W);
Low := Low + Carry;
if Low < Carry then
High := High + 1;
end if;
Index := J + I - 1;
Low := Low + Z(Index);
if Low < Z(Index) then
High := High + 1;
end if;
Z(Index) := Low;
Carry := High;
end loop;
Z(XS + I) := Carry;
end if;
end loop;
end Multiply_Unsigned_Array;
function Multiply_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
pragma Inline (Multiply_Unsigned);
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Z: Object_Pointer;
begin
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Z := Make_Bigint (Interp.Self, A.Size + B.Size);
Pop_Tops (Interp.all, 2);
Multiply_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, Z.Half_Word_Slot);
return Z;
end Multiply_Unsigned;
procedure Divide_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Q: out Object_Pointer;
R: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
Quo: aliased Object_Pointer;
Remn: aliased Object_Pointer;
Dend: aliased Object_Pointer; -- Dividend
Sor: aliased Object_Pointer; -- Divisor
Tmp: Object_Pointer;
Diff: Half_Word_Object_Size;
Dend_Size: Half_Word_Object_Size;
Sor_Size: Half_Word_Object_Size;
Tmp_Size: Half_Word_Object_Size;
Cand_Size: Half_Word_Object_Size;
Cand_W: Object_Word;
Cand: Object_Half_Word_Array (1 .. 2);
begin
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
-- 823456 / 93
-- 823456 930000 : (8 / 9) => 0,
-- 823456 93000 : (82 / 9) => 9,
-- 9 * 93000 => 837000
-- 837000 > 823456
-- 8 * 93000 => 664000
-- 664000 <= 823456
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Push_Top (Interp.all, Quo'Unchecked_Access);
Push_Top (Interp.all, Remn'Unchecked_Access);
Push_Top (Interp.all, Dend'Unchecked_Access);
Push_Top (Interp.all, Sor'Unchecked_Access);
Quo := Make_Bigint (Interp.Self, A.Size);
Remn := Make_Bigint (Interp.Self, A.Size);
Dend := Make_Bigint (Interp.Self, A.Size);
Sor := Make_Bigint (Interp.Self, A.Size);
Tmp := Make_Bigint (Interp.Self, A.Size + B.Size);
Pop_Tops (Interp.all, 6);
Dend_Size := A.Size;
Sor_Size := A.Size;
Diff := A.Size - B.Size;
Dend.Half_Word_Slot := A.Half_Word_Slot;
Sor.Half_Word_Slot(1 + Diff .. B.Size + Diff) := B.Half_Word_Slot;
for I in reverse B.Size .. A.Size loop
if Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Sor.Half_Word_Slot, Sor_Size) then
Quo.Half_Word_Slot(I) := 0;
else
if Dend_Size > Sor_Size then
Cand_W := Make_Word(Dend.Half_Word_Slot(Dend_Size - 1), Dend.Half_Word_Slot(Dend_Size));
Cand_W := Cand_W / Object_Word(Sor.Half_Word_Slot(Sor_Size));
Cand(1) := Get_Low(Cand_W);
Cand(2) := Get_High(Cand_W);
if Cand(2) > 0 then
Cand_Size := 2;
else
Cand_Size := 1;
end if;
else
Cand(1) := Dend.Half_Word_Slot(Dend_Size) / Sor.Half_Word_Slot(Sor_Size);
Cand_Size := 1;
end if;
Tmp.Half_Word_Slot := (others => 0);
Multiply_Unsigned_Array (Cand, Cand_Size, Sor.Half_Word_Slot, Sor_Size, Tmp.Half_Word_Slot);
Tmp_Size := Count_Effective_Slots(Tmp);
if Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size) then
Quo.Half_Word_Slot(I) := Cand(1) - 1;
Subtract_Unsigned_Array (Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size, Dend.Half_Word_Slot);
Dend_Size := Count_Effective_Slots(Dend);
Subtract_Unsigned_Array (Dend.Half_Word_Slot, Dend_Size, Sor.Half_Word_Slot, Sor_Size, Dend.Half_Word_Slot);
Dend_Size := Count_Effective_Slots(Dend);
else
Quo.Half_Word_Slot(I) := Cand(1);
Subtract_Unsigned_Array (Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size, Dend.Half_Word_Slot);
Dend_Size := Count_Effective_Slots(Dend);
end if;
end if;
-- Shift the divisor right by 1 slot
pragma Assert (I = Sor_Size);
Sor_Size := Sor_Size - 1;
Sor.Half_Word_Slot(1 .. Sor_Size) := Sor.Half_Word_Slot(2 .. I);
Sor.Half_Word_Slot(I) := 0;
end loop;
Q := Quo;
R := Remn;
end Divide_Unsigned;
-----------------------------------------------------------------------------
function Add (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
Z: Object_Pointer;
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Add_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
end if;
if A.Sign /= B.Sign then
if A.Sign = Negative_Sign then
Z := Subtract (Interp, B, A);
else
Z := Subtract (Interp, A, B);
end if;
else
Sign := A.Sign;
Z := Add_Unsigned (Interp, A, B);
Z.Sign := Sign;
end if;
return Normalize(Interp, Z);
end Add;
function Subtract (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
A: Object_Pointer := X;
B: Object_Pointer := Y;
Z: Object_Pointer;
Sign: Object_Sign;
begin
Subtract_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
end if;
if A.Sign /= B.Sign then
Sign := A.Sign;
Z := Add_Unsigned (Interp, A, B);
Z.Sign := Sign;
else
if Is_Less_Unsigned(A, B) then
--Sign := Object_Sign'Val(not Object_Sign'Pos(A.Sign)); -- opposite A.Sign
if A.Sign = Negative_Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Z := Subtract_Unsigned (Interp, B, A);
Z.Sign := Sign;
else
Sign := A.Sign;
Z := Subtract_Unsigned (Interp, A, B);
Z.Sign := Sign;
end if;
end if;
return Normalize(Interp, Z);
end Subtract;
function Multiply (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
A: Object_Pointer := X;
B: Object_Pointer := Y;
Z: Object_Pointer;
Sign: Object_Sign;
begin
Multiply_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
end if;
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Z := Multiply_Unsigned (Interp, A, B);
Z.Sign := Sign;
return Normalize(Interp, Z);
end Multiply;
procedure Divide (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer;
Q: out Object_Pointer;
R: out Object_Pointer) is
A: Object_Pointer := X;
B: Object_Pointer := Y;
C: aliased Object_Pointer;
D: aliased Object_Pointer;
Sign: Object_Sign;
begin
if (Is_Integer(Y) and then Pointer_To_Integer(Y) = 0) or else
(Is_Bigint(Y) and then Is_Zero(Y)) then
raise Divide_By_Zero_Error;
end if;
Divide_Integers (Interp, A, B, Q);
if Q /= null then
-- remainder operation must succeed if division was ok.
R := Integer_To_Pointer(Pointer_To_Integer(A) rem Pointer_To_Integer(B));
return;
end if;
if Is_Equal(A, B) then
Q := Integer_To_Pointer(1);
R := Integer_To_Pointer(0);
return;
elsif Is_Less_Unsigned(A, B) then
Q := Integer_To_Pointer(0);
R := A;
return;
end if;
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Divide_Unsigned (Interp, A, B, C, D);
C.Sign := Sign;
D.Sign := Sign;
Push_Top (Interp.all, C'Unchecked_Access);
Push_Top (Interp.all, D'Unchecked_Access);
C := Normalize(Interp, C);
D := Normalize(Interp, D);
Pop_Tops (Interp.all, 2);
Q := C;
R := D;
end Divide;
end Bigint;