separate (H2.Scheme) procedure Execute (Interp: in out Interpreter_Record) is LC: IO_Character_Record renames Interp.Input.Iochar; procedure Evaluate_Result is pragma Inline (Evaluate_Result); begin -- The result from the previous frame is stored in the current frame. -- This procedure takes the result and switch it to an operand and clears it. -- It is used to evaluate the result of Read_Object in principle. -- It takes only the head(car) element of the result chain. -- Calling this function to evaluate the result of any arbitrary frame -- other than 'Read_Object' is not recommended. Set_Frame_Operand (Interp.Stack, Get_Car(Get_Frame_Result(Interp.Stack))); Clear_Frame_Result (Interp.Stack); Set_Frame_Opcode (Interp.Stack, Opcode_Evaluate_Object); end Evaluate_Result; procedure Evaluate_Group is pragma Inline (Evaluate_Group); Operand: aliased Object_Pointer; Car: aliased Object_Pointer; Cdr: aliased Object_Pointer; begin Push_Top (Interp, Operand'Unchecked_Access); Push_Top (Interp, Car'Unchecked_Access); Push_Top (Interp, Cdr'Unchecked_Access); Operand := Get_Frame_Operand(Interp.Stack); pragma Assert (Is_Normal_Pointer(Operand)); case Operand.Tag is when Cons_Object => Car := Get_Car(Operand); Cdr := Get_Cdr(Operand); if Is_Cons(Cdr) then -- Let the current frame remember the next expression list Set_Frame_Operand (Interp.Stack, Cdr); else if Cdr /= Nil_Pointer then -- The last CDR is not Nil. Ada.Text_IO.Put_Line ("$$$$..................FUCKING CDR. FOR GROUP....................$$$$"); raise Syntax_Error; end if; -- Change the operand to a mark object so that the call to this -- procedure after the evaluation of the last car goes to the -- Mark_Object case. Set_Frame_Operand (Interp.Stack, Interp.Mark); end if; -- Clear the return value from the previous expression. Clear_Frame_Result (Interp.Stack); -- Arrange to evaluate the current expression Push_Frame (Interp, Opcode_Evaluate_Object, Car); when Mark_Object => Operand := Get_Frame_Result(Interp.Stack); Pop_Frame (Interp); -- Done -- There must be only 1 return value chained in the Group frame. pragma Assert (Get_Cdr(Operand) = Nil_Pointer); -- Transfer the only return value to the upper chain Chain_Frame_Result (Interp, Interp.Stack, Get_Car(Operand)); when others => raise Internal_Error; end case; Pop_Tops (Interp, 3); end Evaluate_Group; -- ---------------------------------------------------------------- generic V: Object_Pointer; procedure Evaluate_Up_To; procedure Evaluate_Up_To is X: Object_Pointer; Y: Object_Pointer; begin X := Get_Frame_Operand(Interp.Stack); Y := Get_Frame_Result(Interp.Stack); -- Evaluate_And_Syntax/Evaluate-Or_Syntax has arranged to -- evaluate . Y must not be Nil_Pointer even at the -- first time this procedure is called, pragma Assert (Is_Cons(Y)); pragma Assert (Get_Cdr(Y) = Nil_Pointer); -- ensure 1 resul Y := Get_Car(Y); -- actual result if Y /= V and then Is_Cons(X) then -- The result is not what I look for. -- Yet there are still more tests to evaluate. Set_Frame_Operand (Interp.Stack, Get_Cdr(X)); Clear_Frame_Result (Interp.Stack); Push_Frame (Interp, Opcode_Evaluate_Object, Get_Car(X)); else -- Return the result of the last expression evaluated. Pop_Frame (Interp); Chain_Frame_Result (Interp, Interp.Stack, Y); end if; end Evaluate_Up_To; procedure Finish_And_Syntax is new Evaluate_Up_To(False_Pointer); procedure Finish_Or_Syntax is new Evaluate_Up_To(True_Pointer); -- ---------------------------------------------------------------- procedure Finish_Define_Symbol is pragma Inline (Finish_Define_Symbol); X: aliased Object_Pointer; Y: aliased Object_Pointer; begin Push_Top (Interp, X'Unchecked_Access); Push_Top (Interp, Y'Unchecked_Access); X := Get_Frame_Operand(Interp.Stack); -- symbol pragma Assert (Is_Symbol(X)); Y := Get_Frame_Result(Interp.Stack); -- value list pragma Assert (Get_Cdr(Y) = Nil_Pointer); -- ensure only 1 return value Y := Get_Car(Y); -- the first value Put_Environment (Interp, X, Y); Pop_Frame (Interp); -- Done Chain_Frame_Result (Interp, Interp.Stack, Y); Pop_Tops (Interp, 2); end Finish_Define_Symbol; procedure Finish_If_Syntax is pragma Inline (Finish_If_Syntax); X: aliased Object_Pointer; Y: aliased Object_Pointer; Z: aliased Object_Pointer; begin Push_Top (Interp, X'Unchecked_Access); Push_Top (Interp, Y'Unchecked_Access); X := Get_Frame_Operand(Interp.Stack); -- cons cell containing pragma Assert (Is_Cons(X)); Y := Get_Frame_Result(Interp.Stack); -- result list of pragma Assert (Get_Cdr(Y) = Nil_Pointer); -- ensure only 1 return value Y := Get_Car(Y); -- the first value pragma Assert (Interp.Environment = Get_Frame_Environment(Interp.Stack)); if Y = False_Pointer then -- evaluated to #f. X := Get_Cdr(X); -- cons cell containing if Is_Cons(X) then -- Switch the current current to evaluate -- Keep the environment untouched. Set_Frame_Opcode (Interp.Stack, Opcode_Evaluate_Object); Set_Frame_Operand (Interp.Stack, Get_Car(X)); Clear_Frame_Result (Interp.Stack); else Pop_Frame (Interp); -- Return nil if no is specified Chain_Frame_Result (Interp, Interp.Stack, Nil_Pointer); end if; else -- All values except #f are true values. evaluate -- Switch the current current to evaluate -- Keep the environment untouched. Set_Frame_Opcode (Interp.Stack, Opcode_Evaluate_Object); Set_Frame_Operand (Interp.Stack, Get_Car(X)); Clear_Frame_Result (Interp.Stack); end if; Pop_Tops (Interp, 2); end Finish_If_Syntax; -- -------------------------------------------------------------------- procedure Do_Let_Evaluation is pragma Inline (Do_Let_Evaluation); X: Object_Pointer; Y: Object_Pointer; begin X := Get_Frame_Operand(Interp.Stack); -- and onward if Is_Cons(X) then Set_Frame_Operand (Interp.Stack, Get_Cdr(X)); -- Say, is ((x 2) (y 2)). -- for the first call, Get_Car(X) is (x 2). -- To get x, Get_Car(Get_Car(X)) -- To get 2, Get_Car(Get_Cdr(Get_Car(X))) Push_Frame (Interp, Opcode_Evaluate_Object, Get_Car(Get_Cdr(Get_Car(X)))); else -- Pass the result to the Perform_Let_Binding frame. Y := Get_Frame_Result(Interp.Stack); Pop_Frame (Interp); Set_Frame_Result (Interp.Stack, Y); end if; end Do_Let_Evaluation; procedure Do_Let_Binding is pragma Inline (Do_Let_Binding); X: aliased Object_Pointer; Y: aliased Object_Pointer; begin Push_Top (Interp, X'Unchecked_Access); Push_Top (Interp, Y'Unchecked_Access); -- Evaluation of is completed. -- Update the environments. X := Get_Frame_Operand(Interp.Stack); -- and onward Y := Reverse_Cons(Get_Frame_Result(Interp.Stack)); while Is_Cons(X) loop pragma Assert (Is_Cons(Y)); Put_Environment (Interp, Get_Car(Get_Car(X)), Get_Car(Y)); X := Get_Cdr(X); Y := Get_Cdr(Y); end loop; Pop_Frame (Interp); -- done. Pop_Tops (Interp, 2); end Do_Let_Binding; procedure Do_Letast_Binding is pragma Inline (Do_Letast_Binding); X: aliased Object_Pointer; Y: aliased Object_Pointer; begin Push_Top (Interp, X'Unchecked_Access); Push_Top (Interp, Y'Unchecked_Access); X := Get_Frame_Operand(Interp.Stack); -- and onward Y := Get_Frame_Result(Interp.Stack); if Y = Nil_Pointer then -- First call pragma Assert (Is_Cons(X)); -- Don't provoke this procedure if is empty. Push_Frame (Interp, Opcode_Evaluate_Object, Get_Car(Get_Cdr(Get_Car(X)))); else -- Subsequence calls -- Update the environment while evaluating Put_Environment (Interp, Get_Car(Get_Car(X)), Get_Car(Y)); X := Get_Cdr(X); -- next binding if Is_Cons(X) then -- More bingings to evaluate Set_Frame_Operand (Interp.Stack, X); Clear_Frame_Result (Interp.Stack); Push_Frame (Interp, Opcode_Evaluate_Object, Get_Car(Get_Cdr(Get_Car(X)))); else -- No more bingings left Pop_Frame (Interp); -- Done end if; end if; Pop_Tops (Interp, 2); end Do_Letast_Binding; procedure Do_Let_Finish is pragma Inline (Do_Let_Finish); begin pragma Assert (Get_Frame_Result(Interp.Stack) = Nil_Pointer); -- Evaluate_Let_Syntax has places in the operand of this frame. -- can be evaluated as if it's in 'begin'. Set_Frame_Opcode (Interp.Stack, Opcode_Evaluate_Group); end Do_Let_Finish; -- -------------------------------------------------------------------- procedure Finish_Set_Syntax is pragma Inline (Finish_Set_Syntax); X: aliased Object_Pointer; Y: aliased Object_Pointer; begin Push_Top (Interp, X'Unchecked_Access); Push_Top (Interp, Y'Unchecked_Access); X := Get_Frame_Operand(Interp.Stack); -- symbol Y := Get_Car(Get_Frame_Result(Interp.Stack)); -- value pragma Assert (Is_Symbol(X)); pragma Assert (Get_Cdr(Get_Frame_Result(Interp.Stack)) = Nil_Pointer); if Set_Environment(Interp.Self, X, Y) = null then Ada.Text_IO.PUt_LINE ("ERROR: UNBOUND SYMBOL"); raise Evaluation_Error; end if; Pop_Frame (Interp); -- Done Chain_Frame_Result (Interp, Interp.Stack, Y); Pop_Tops (Interp, 2); end Finish_Set_Syntax; procedure Evaluate is separate; procedure Apply is separate; procedure Unfetch_Character is pragma Inline (Unfetch_Character); pragma Assert (not Interp.LC_Unfetched); begin Interp.LC_Unfetched := Standard.True; end Unfetch_Character; procedure Fetch_Character is begin -- TODO: calculate Interp.Input.Row, Interp.Input.Column if Interp.Input.Pos >= Interp.Input.Last then if Interp.Input.Flags /= 0 then -- An error has occurred or EOF has been reached previously. -- Note calling this procedure after EOF results in an error. Interp.Input.Iochar := (Error_Character, Object_Character'First); --return; raise IO_Error; end if; Interp.Input.Pos := Interp.Input.Data'First - 1; begin Read (Interp.Input.Stream.all, Interp.Input.Data, Interp.Input.Last); exception when others => -- The callee can raise an exception upon errors. -- If an exception is raised, data read into the buffer -- is also ignored. Interp.Input.Flags := Interp.Input.Flags and IO_Error_Occurred; Interp.Input.Iochar := (Error_Character, Object_Character'First); --return; raise IO_Error; end; if Interp.Input.Last < Interp.Input.Data'First then -- The callee must read 0 bytes on EOF Interp.Input.Flags := Interp.Input.Flags and IO_End_Reached; Interp.Input.Iochar := (End_Character, Object_Character'First); return; end if; end if; Interp.Input.Pos := Interp.Input.Pos + 1; Interp.Input.Iochar := (Normal_Character, Interp.Input.Data(Interp.Input.Pos)); end Fetch_Character; function Is_White_Space (X: in Object_Character) return Standard.Boolean is begin return X = Ch.Space or else X = Ch.HT or else X = Ch.VT or else X = Ch.CR or else X = Ch.LF or else X = Ch.FF; end Is_White_Space; function Is_Delimiter (X: in Object_Character) return Standard.Boolean is begin return X = Ch.Left_Parenthesis or else X = Ch.Right_Parenthesis or else X = Ch.Quotation or else X = Ch.Semicolon or else Is_White_Space(X); end Is_Delimiter; procedure Skip_Spaces_And_Comments is begin loop exit when LC.Kind /= Normal_Character; -- Normal character if Is_White_Space(LC.Value) then Fetch_Character; elsif LC.Value = Ch.Semicolon then -- Comment. loop Fetch_Character; exit when LC.Kind = End_Character; -- EOF before LF if LC.Kind = Normal_Character and then LC.Value = Ch.LF then -- TODO: handle different line ending convention Fetch_Character; -- Read the next character after LF exit; end if; end loop; else exit; end if; end loop; end Skip_Spaces_And_Comments; procedure Fetch_Token is Tmp: Object_Character_Array(1..10); -- large enough??? begin if not Interp.LC_Unfetched then Fetch_Character; else -- Reuse the last character unfetched Interp.LC_Unfetched := Standard.False; end if; Skip_Spaces_And_Comments; if LC.Kind /= Normal_Character then Token.Set (Interp, End_Token); return; end if; -- TODO: Pass Token Location when calling Token.Set -- Use Ch.Pos.XXX values instead of Ch.XXX values as gnat complained that -- Ch.XXX values are not static. For this reason, "case LC.Value is ..." -- changed to use Object_Character'Pos(LC.Value). case Object_Character'Pos(LC.Value) is when Ch.Pos.Left_Parenthesis => Token.Set (Interp, Left_Parenthesis_Token, LC.Value); when Ch.Pos.Right_Parenthesis => Token.Set (Interp, Right_Parenthesis_Token, LC.Value); when Ch.Pos.Period => Token.Set (Interp, Period_Token, LC.Value); when Ch.Pos.Apostrophe => Token.Set (Interp, Single_Quote_Token, LC.Value); when Ch.Pos.Number_Sign => Fetch_Character; if LC.Kind /= Normal_Character then -- ended prematurely. -- TODO: Set Error code, Error Number.... Error location raise Syntax_Error; end if; -- #t -- #f -- #\C -- character -- #\xHHHH -- unicode -- #\xHHHHHHHH -- unicode -- #( ) -- vector -- #[ ] -- list -- #{ } -- hash table -- #< > -- xxx case Object_Character'Pos(LC.Value) is when Ch.Pos.LC_T => -- #t Token.Set (Interp, True_Token, Ch.Number_Sign); Token.Append_Character (Interp, LC.Value); when Ch.Pos.LC_F => -- #f Token.Set (Interp, False_Token, Ch.Number_Sign); Token.Append_Character (Interp, LC.Value); when Ch.Pos.Backslash => -- #\C, #\space, #\newline Fetch_Character; if LC.Kind /= Normal_Character then ada.text_io.put_line ("ERROR: NO CHARACTER AFTER #\"); raise Syntax_Error; end if; Token.Set (Interp, Character_Token, LC.Value); loop Fetch_Character; if LC.Kind /= Normal_Character or else Is_Delimiter(LC.Value) then Unfetch_Character; exit; end if; Token.Append_Character (Interp, LC.Value); end loop; if Interp.Token.Value.Last > 1 then -- TODO: case insensitive match. binary search for more diverse words -- TODO: #\xHHHH.... if Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last) = Label_Newline then Token.Set (Interp, Character_Token, Ch.LF); -- reset the token to LF elsif Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last) = Label_Space then Token.Set (Interp, Character_Token, Ch.Space); -- reset the token to Space else -- unknown character name. ada.text_io.put ("ERROR: UNKNOWN CHARACTER NAME "); for I in 1 .. interp.token.value.last loop ada.text_io.put (standard.character'val(object_character'pos(interp.token.value.ptr.all(i)))); end loop; ada.text_io.new_line; raise Syntax_Error; end if; end if; --when Ch.Pos.Left_Parenthesis => -- #( -- Token.Set (Interp, Vector_Token, Ch.Number_Sign); -- Token.Append_Character (Interp, LC.Value); --when Ch.Pos.Left_Bracket => -- $[ -- Token.Set (Interp, List_Token, Ch.Number_Sign); -- Token.Append_Character (Interp, LC.Value); --when Ch.Pos.Left_Bracket => -- ${ -- Token.Set (Interp, Table_Token, Ch.Number_Sign); -- Token.Append_Character (Interp, LC.Value); when others => -- unknown #letter -- TODO: Set Error code, Error Number.... Error location raise Syntax_Error; end case; when Ch.Pos.Quotation => Fetch_Character; Token.Set (Interp, String_Token); loop if LC.Kind /= Normal_Character then -- String ended prematurely. -- TODO: Set Error code, Error Number.... Error location raise Syntax_Error; end if; if LC.Value = Ch.Backslash then Fetch_Character; if LC.Kind /= Normal_Character then -- String ended prematurely. -- TODO: Set Error code, Error Number.... Error location raise Syntax_Error; end if; -- TODO: escape letters??? \n \r \\ etc.... Token.Append_Character (Interp, LC.Value); elsif LC.Value = Ch.Quotation then exit; else Token.Append_Character (Interp, LC.Value); Fetch_Character; end if; end loop; when Ch.Pos.Zero .. Ch.Pos.Nine => -- TODO; negative number, floating-point number, bignum, hexdecimal, etc Token.Set (Interp, Integer_Token); loop Token.Append_Character (Interp, LC.Value); Fetch_Character; if LC.Kind /= Normal_Character or else LC.Value not in Ch.Zero .. Ch.Nine then -- Unfetch the last character Unfetch_Character; exit; end if; end loop; when Ch.Pos.Plus_Sign | Ch.Pos.Minus_Sign => Tmp(1) := LC.Value; Fetch_Character; if LC.Kind = Normal_Character and then LC.Value in Ch.Zero .. Ch.Nine then Token.Set (Interp, Integer_Token, Tmp(1..1)); loop Token.Append_Character (Interp, LC.Value); Fetch_Character; if LC.Kind /= Normal_Character or else LC.Value not in Ch.Zero .. Ch.Nine then Unfetch_Character; exit; end if; end loop; else Token.Set (Interp, Identifier_Token, Tmp(1..1)); loop -- TODO: more characters if LC.Kind /= Normal_Character or else Is_Delimiter(LC.Value) then Unfetch_Character; exit; end if; Token.Append_Character (Interp, LC.Value); Fetch_Character; end loop; end if; when others => Token.Set (Interp, Identifier_Token); loop Token.Append_Character (Interp, LC.Value); Fetch_Character; --exit when not Is_Ident_Char(C.Value); -- TODO: more characters if LC.Kind /= Normal_Character or else Is_Delimiter(LC.Value) then Unfetch_Character; exit; end if; end loop; end case; --Ada.Text_IO.Put (">>>>>>>>>>>>>>>>>>>>>>> Token: " & Interp.Token.Value.Ptr(1..Interp.Token.Value.Last)); end Fetch_Token; procedure Read_List is pragma Inline (Read_List); V: aliased Object_Pointer; begin -- This procedure reads each token in a list. -- If the list contains no period, this procedure reads up to the -- closing right paranthesis; If a period is contained, it transfers -- the control over to Read_List_Cdr. Fetch_Token; --Push_Top (Interp, V'Unchecked_Access); case Interp.Token.Kind is when End_Token => Ada.Text_IO.Put_Line ("ERROR: PREMATURE LIST END"); raise Syntax_Error; when Left_Parenthesis_Token => Push_Frame (Interp, Opcode_Read_List, Nil_Pointer); when Right_Parenthesis_Token => V := Get_Frame_Result(Interp.Stack); if V /= Nil_Pointer then V := Reverse_Cons(V); end if; Pop_Frame (Interp); Chain_Frame_Result (Interp, Interp.Stack, V); when Period_Token => V := Get_Frame_Result(Interp.Stack); if V = Nil_Pointer then -- . immediately after ( raise Syntax_Error; else Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_Cdr); end if; when Single_Quote_Token => Push_Frame (Interp, Opcode_Close_Quote, Nil_Pointer); Push_Frame (Interp, Opcode_Read_Object, Nil_Pointer); when Integer_Token => -- TODO: bignum V := String_To_Integer_Pointer(Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Chain_Frame_Result (Interp, Interp.Stack, V); when Character_Token => pragma Assert (Interp.Token.Value.Last = 1); V := Character_To_Pointer(Interp.Token.Value.Ptr.all(1)); Chain_Frame_Result (Interp, Interp.Stack, V); when String_Token => V := Make_String(Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Chain_Frame_Result (Interp, Interp.Stack, V); when Identifier_Token => V := Make_Symbol(Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Chain_Frame_Result (Interp, Interp.Stack, V); when True_Token => Chain_Frame_Result (Interp, Interp.Stack, True_Pointer); when False_Token => Chain_Frame_Result (Interp, Interp.Stack, False_Pointer); when others => -- TODO: set various error info raise Syntax_Error; end case; --Pop_Tops (Interp, 1); end Read_List; procedure Read_List_Cdr is pragma Inline (Read_List_Cdr); V: aliased Object_Pointer; begin -- This procedure reads the first token after a period has been read. -- It transfers the control over to Read_List_End once it has read -- and processed the token. It chains the value made of the token -- to the front of the frame's return value list expecting Read_List_End -- to handle the head item specially. Fetch_Token; --Push_Top (Interp, V'Unchecked_Access); case Interp.Token.Kind is when End_Token => Ada.Text_IO.Put_Line ("ERROR: PREMATURE LIST END"); raise Syntax_Error; when Left_Parenthesis_Token => Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Push_Frame (Interp, Opcode_Read_List, Nil_Pointer); when Single_Quote_Token => Ada.Text_IO.Put_Line ("ERROR: CDR QUOT LIST END"); Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Push_Frame (Interp, Opcode_Close_Quote, Nil_Pointer); Push_Frame (Interp, Opcode_Read_Object, Nil_Pointer); when Integer_Token => -- TODO: bignum V := String_To_Integer_Pointer(Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, V); when Character_Token => pragma Assert (Interp.Token.Value.Last = 1); V := Character_To_Pointer(Interp.Token.Value.Ptr.all(1)); Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, V); when String_Token => V := Make_String (Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, V); when Identifier_Token => V := Make_Symbol (Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, V); when True_Token => Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, True_Pointer); when False_Token => Set_Frame_Opcode (Interp.Stack, Opcode_Read_List_End); Chain_Frame_Result (Interp, Interp.Stack, False_Pointer); when others => -- TODO: set various error info raise Syntax_Error; end case; --Pop_Tops (Interp, 1); end Read_List_Cdr; procedure Read_List_End is pragma Inline (Read_List_End); V: aliased Object_Pointer; begin Fetch_Token; --Push_Top (Interp, V'Unchecked_Access); case Interp.Token.Kind is when Right_Parenthesis_Token => V := Get_Frame_Result(Interp.Stack); pragma Assert (V /= Nil_Pointer); -- The first item in the chain is actually Cdr of the last cell. V := Reverse_Cons(Get_Cdr(V), Get_Car(V)); Pop_Frame (Interp); Chain_Frame_Result (Interp, Interp.Stack, V); when others => Ada.Text_IO.Put_Line ("Right parenthesis expected"); raise Syntax_Error; end case; --Pop_Tops (Interp, 1); end Read_List_End; procedure Close_List is pragma Inline (Close_List); V: aliased Object_Pointer; begin --Push_Top (Interp, V'Unchecked_Access); V := Get_Frame_Result(Interp.Stack); pragma Assert (Get_Cdr(V) = Nil_Pointer); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, Get_Car(V)); --Pop_Tops (Interp, 1); end Close_List; procedure Close_Quote is pragma Inline (Close_Quote); V: aliased Object_Pointer; begin --Push_Top (Interp, V'Unchecked_Access); Chain_Frame_Result (Interp, Interp.Stack, Interp.Symbol.Quote); V := Get_Frame_Result(Interp.Stack); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, V); --Pop_Tops (Interp, 1); end Close_Quote; procedure Read_Object is pragma Inline (Read_Object); V: aliased Object_Pointer; begin Fetch_Token; --Push_Top (Interp, V'Unchecked_Access); case Interp.Token.Kind is when End_Token => Ada.Text_IO.Put_Line ("INFO: NO MORE TOKEN "); raise Stream_End_Error; when Left_Parenthesis_Token => Set_Frame_Opcode (Interp.Stack, Opcode_Close_List); Push_Frame (Interp, Opcode_Read_List, Nil_Pointer); when Single_Quote_Token => Set_Frame_Opcode (Interp.Stack, Opcode_Close_Quote); Push_Frame (Interp, Opcode_Read_Object, Nil_Pointer); when Integer_Token => -- TODO: bignum V := String_To_Integer_Pointer(Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, V); when Character_Token => pragma Assert (Interp.Token.Value.Last = 1); V := Character_To_Pointer(Interp.Token.Value.Ptr.all(1)); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, V); when String_Token => V := Make_String (Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, V); when Identifier_Token => V := Make_Symbol (Interp.Self, Interp.Token.Value.Ptr.all(1..Interp.Token.Value.Last)); Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, V); when True_Token => Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, True_Pointer); when False_Token => Pop_Frame (Interp); -- Done with the current frame Chain_Frame_Result (Interp, Interp.Stack, False_Pointer); when others => -- TODO: set various error info raise Syntax_Error; end case; --Pop_Tops (Interp, 1); end Read_Object; begin -- Stack frames looks like this upon initialization -- -- | Opcode | Operand | Result -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | Source | Nil -- bottom | Opcode_Exit | Nil | Nil -- -- For a source (+ 1 2), it should look like this. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | Source | Nil -- bottom | Opcode_Exit | Nil | Nil -- -- The operand changes to the cdr of the source. -- The symbol '+' is pushed to the stack with Opcode_Evaluate_Object. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | + | Nil -- | Opcode_Evaluate_Object | (1 2) | Nil -- bottom | Opcode_Exit | Nil | Nil -- -- After the evaluation of the symbol, the pushed frame is removed -- and the result is set to the return field. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | (1 2) | (#Proc+) -- bottom | Opcode_Exit | Nil | Nil -- -- The same action is taken to evaluate the literal 1. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | 1 | Nil -- | Opcode_Evaluate_Object | (2) | (#Proc+) -- bottom | Opcode_Exit | Nil | Nil -- -- The result of the valuation is reverse-chained to the return field. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | (2) | (1 #Proc+) -- bottom | Opcode_Exit | Nil | Nil -- -- The same action is taken to evaluate the literal 2. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | 2 | Nil -- | Opcode_Evaluate_Object | Mark | (1 #Proc+) -- bottom | Opcode_Exit | Nil | Nil -- -- The result of the valuation is reverse-chained to the return field. -- ----------------------------------------------------------------- -- top | Opcode_Evaluate_Object | Mark | (2 1 #Proc+) -- bottom | Opcode_Exit | Nil | Nil -- -- Once evluation of each cons cell is complete, switch the top frame -- to 'Apply' reversing the result field into the operand field and -- nullifying the result field afterwards. -- ----------------------------------------------------------------- -- top | Apply | (#Proc+ 1 2) | Nil -- bottom | Opcode_Exit | Nil | Nil -- -- The apply operation produces the final result and sets it to the -- parent frame while removing the apply frame. -- ----------------------------------------------------------------- -- top/bottom| Opcode_Exit | Nil | (3) -- The caller must push some frames before calling this procedure pragma Assert (Interp.Stack /= Nil_Pointer); -- The caller must ensure there are no temporary object pointers. pragma Assert (Interp.Top.Last < Interp.Top.Data'First); loop case Get_Frame_Opcode(Interp.Stack) is when Opcode_Exit => exit; when Opcode_Evaluate_Result => Evaluate_Result; when Opcode_Evaluate_Object => Evaluate; when Opcode_Evaluate_Group => Evaluate_Group; when Opcode_Finish_And_Syntax => Finish_And_Syntax; -- Conditional --when Opcode_Finish_Case_Syntax => --when Opcode_Finish_Cond_Syntax => when Opcode_Finish_Define_Symbol => Finish_Define_Symbol; when Opcode_Finish_If_Syntax => Finish_If_Syntax; -- Conditional when Opcode_Let_Binding => Do_Let_Binding; when Opcode_Letast_Binding => Do_Letast_Binding; when Opcode_Let_Evaluation => Do_Let_Evaluation; when Opcode_Let_Finish => Do_Let_Finish; when Opcode_Finish_Or_Syntax => Finish_Or_Syntax; -- Conditional when Opcode_Finish_Set_Syntax => Finish_Set_Syntax; -- Assignment when Opcode_Apply => Apply; when Opcode_Read_Object => Read_Object; when Opcode_Read_List => Read_List; when Opcode_Read_List_Cdr => Read_List_Cdr; when Opcode_Read_List_End => Read_List_End; when Opcode_Close_List => Close_List; when Opcode_Close_Quote => Close_Quote; end case; end loop; exception when Stream_End_Error => Ada.Text_IO.Put_Line ("INFO: NO MORE TOKEN ............."); raise; when others => Ada.Text_IO.Put_Line ("EXCEPTION OCCURRED"); -- TODO: restore stack frame??? -- TODO: restore envirronemtn frame??? raise; end Execute;