hcl/lib/h2-scheme-bigint.adb

488 lines
14 KiB
Ada
Raw Normal View History

2014-02-20 14:51:53 +00:00
with H2.Pool;
separate (H2.Scheme)
package body Bigint is
use type System.Bit_Order;
Big_Endian : constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.High_Order_First
);
Little_Endian : constant := Standard.Boolean'Pos (
System.Default_Bit_Order = System.Low_Order_First
);
2014-02-24 15:17:57 +00:00
--Half_Word_Bits: constant := Object_Pointer_Bits / 2;
Half_Word_Bits: constant := Object_Half_Word'Size;
2014-02-20 14:51:53 +00:00
Half_Word_Bytes: constant := Half_Word_Bits / System.Storage_Unit;
type Word_Record is record
Low: Object_Half_Word;
High: Object_Half_Word;
end record;
for Word_Record use record
--Low at 0 range 0 .. Half_Word_Bits - 1;
--High at 0 range Half_Word_Bits .. Word_Bits - 1;
Low at Half_Word_Bytes * (0 * Little_Endian + 1 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
High at Half_Word_Bytes * (1 * Little_Endian + 0 * Big_Endian)
range 0 .. Half_Word_Bits - 1;
end record;
for Word_Record'Size use Object_Word'Size;
--for Word_Record'Size use Object_Pointer_Bits;
--for Word_Record'Alignment use Object_Word'Alignment;
--for Word_Record'Scalar_Storage_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.High_Order_First;
--for Word_Record'Bit_Order use System.Low_Order_First;
2014-02-24 15:17:57 +00:00
-----------------------------------------------------------------------------
2014-02-20 14:51:53 +00:00
function Get_Low (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.Low;
end Get_Low;
function Get_High (W: in Object_Word) return Object_Half_Word is
R: Word_Record;
for R'Address use W'Address;
begin
return R.High;
end Get_High;
2014-02-23 16:57:31 +00:00
function Make_Word (L: in Object_Half_Word;
H: in Object_Half_Word) return Object_Word is
W: Object_Word;
R: Word_Record;
for R'Address use W'Address;
2014-02-21 16:08:43 +00:00
begin
2014-02-23 16:57:31 +00:00
R.Low := L;
R.High := H;
return W;
end Make_Word;
2014-02-21 16:08:43 +00:00
2014-02-24 15:17:57 +00:00
-----------------------------------------------------------------------------
2014-02-23 16:57:31 +00:00
function Is_Less_Unsigned (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
pragma Inline (Is_Less_Unsigned);
begin
2014-02-21 16:08:43 +00:00
if X.Size /= Y.Size then
return X.Size < Y.Size;
end if;
for I in reverse X.Half_Word_Slot'Range loop
if X.Half_Word_Slot(I) /= Y.Half_Word_Slot(I) then
return X.Half_Word_Slot(I) < Y.Half_Word_Slot(I);
end if;
end loop;
return Standard.False;
2014-02-23 16:57:31 +00:00
end Is_Less_Unsigned;
function Is_Less (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
if X.Sign /= Y.Sign then
return X.Sign = Negative_Sign;
end if;
return Is_Less_Unsigned (X, Y);
2014-02-21 16:08:43 +00:00
end Is_Less;
function Is_Equal (X: in Object_Pointer;
Y: in Object_Pointer) return Standard.Boolean is
begin
return X.Sign = Y.Sign and then
X.Size = Y.Size and then
X.Half_Word_Slot = Y.Half_Word_Slot;
end Is_Equal;
2014-02-23 16:57:31 +00:00
function Is_Zero (X: in Object_Pointer) return Standard.Boolean is
begin
return X.Size = 1 and then X.Half_Word_Slot(1) = 0;
end Is_Zero;
2014-02-24 15:17:57 +00:00
-----------------------------------------------------------------------------
function Normalize (Interp: access Interpreter_Record;
X: in Object_Pointer) return Object_Pointer is
Last: Half_Word_Object_Size := 1;
2014-02-23 16:57:31 +00:00
begin
2014-02-24 15:17:57 +00:00
for I in reverse 1 .. X.Size loop
if X.Half_Word_Slot(I) /= 0 then
Last := I;
exit;
end if;
end loop;
case Last is
2014-02-23 16:57:31 +00:00
when 1 =>
if X.Sign = Negative_Sign then
return Integer_To_Pointer(-Object_Integer(X.Half_Word_Slot(1)));
else
return Integer_To_Pointer(Object_Integer(X.Half_Word_Slot(1)));
end if;
when 2 =>
declare
W: Object_Word := Make_Word (X.Half_Word_Slot(1), X.Half_Word_Slot(2));
begin
if X.Sign = Negative_Sign then
if W in 0 .. Object_Word(-Object_Signed_Word(Object_Integer'First)) then
return Integer_To_Pointer(-Object_Integer(W));
end if;
else
if W in 0 .. Object_Word(Object_Integer'Last) then
return Integer_To_Pointer(Object_Integer(W));
end if;
end if;
end;
when others =>
2014-02-24 15:17:57 +00:00
null;
2014-02-23 16:57:31 +00:00
end case;
2014-02-24 15:17:57 +00:00
if X.Size = Last then
return X;
else
return Make_Bigint(Interp, X, Last);
end if;
2014-02-23 16:57:31 +00:00
end Normalize;
2014-02-24 15:17:57 +00:00
-----------------------------------------------------------------------------
generic
with function Operator (X: in Object_Integer;
Y: in Object_Integer) return Object_Integer;
procedure Plain_Integer_Op (Interp: access Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer);
procedure Plain_Integer_Op (Interp: access Interpreter_Record;
X: in out Object_Pointer;
Y: in out Object_Pointer;
Z: out Object_Pointer) is
A: aliased Object_Pointer := X;
B: aliased Object_Pointer := Y;
begin
if Is_Integer(A) and then Is_Integer(B) then
declare
G: Object_Integer := Pointer_To_Integer(A);
H: Object_Integer := Pointer_To_Integer(B);
begin
X := A;
Y := B;
Z := Integer_To_Pointer(Operator(G, H));
return;
exception
when Constraint_Error =>
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
-- TODO: allocate A and B from a non-GC heap.
-- I know that pointers returned by Make_Bigint here are short-lived
-- and not needed after actual operation. non-GC heap is a better choice.
A := Make_Bigint(Interp, Value => G);
B := Make_Bigint(Interp, Value => H);
Pop_Tops (Interp.all, 2);
end;
else
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
if Is_Integer(A) then
A := Make_Bigint(Interp, Value => Pointer_To_Integer(A));
end if;
if Is_Integer(B) then
B := Make_Bigint(Interp, Value => Pointer_To_Integer(B));
end if;
Pop_Tops (Interp.all, 2);
end if;
X := A;
Y := B;
Z := null;
end Plain_Integer_Op;
procedure Add_Integers is new Plain_Integer_Op (Operator => "+");
procedure Subtract_Integers is new Plain_Integer_Op (Operator => "-");
procedure Multiply_Integers is new Plain_Integer_Op (Operator => "*");
procedure Divide_Integers is new Plain_Integer_Op (Operator => "/");
-----------------------------------------------------------------------------
2014-02-23 16:57:31 +00:00
function Add_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
2014-02-21 16:08:43 +00:00
pragma Assert (Is_Bigint(X));
pragma Assert (Is_Bigint(Y));
2014-02-20 14:51:53 +00:00
2014-02-21 16:08:43 +00:00
A, B, Z: aliased Object_Pointer;
W: Object_Word;
Carry: Object_Half_Word;
Last: Half_Word_Object_Size;
2014-02-20 14:51:53 +00:00
begin
2014-02-21 16:08:43 +00:00
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Push_Top (Interp.all, Z'Unchecked_Access);
2014-02-23 16:57:31 +00:00
if X.Size >= Y.Size then
2014-02-21 16:08:43 +00:00
A := X;
B := Y;
Last := X.Size + 1;
else
A := Y;
B := X;
Last := Y.Size + 1;
end if;
Z := Make_Bigint (Interp.Self, Last);
Carry := 0;
for I in 1 .. B.Size loop
W := Object_Word(A.Half_Word_Slot(I)) + Object_Word(B.Half_Word_Slot(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z.Half_Word_Slot(I) := Get_Low(W);
end loop;
2014-02-20 14:51:53 +00:00
2014-02-21 16:08:43 +00:00
for I in B.Size + 1 .. A.Size loop
W := Object_Word(A.Half_Word_Slot(I)) + Object_Word(Carry);
Carry := Get_High(W);
Z.Half_Word_Slot(I) := Get_Low(W);
end loop;
2014-02-25 16:10:46 +00:00
Z.Half_Word_Slot(Last) := Carry;
2014-02-21 16:08:43 +00:00
Pop_Tops (Interp.all, 3);
return Z;
2014-02-23 16:57:31 +00:00
end Add_Unsigned;
2014-02-20 14:51:53 +00:00
2014-02-23 16:57:31 +00:00
function Subtract_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
2014-02-21 16:08:43 +00:00
A, B, Z: aliased Object_Pointer;
2014-02-25 16:10:46 +00:00
T: Object_Word;
Borrowed_Word: constant Object_Word := Object_Word(Object_Half_Word'Last) + 1;
Borrow: Object_Half_Word := 0;
2014-02-21 16:08:43 +00:00
begin
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Push_Top (Interp.all, Z'Unchecked_Access);
2014-02-25 16:10:46 +00:00
A := X;
B := Y;
pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
2014-02-21 16:08:43 +00:00
2014-02-25 16:10:46 +00:00
Z := Make_Bigint (Interp.Self, A.Size); -- Assume X.Size >= Y.Size.
2014-02-21 16:08:43 +00:00
for I in 1 .. B.Size loop
2014-02-25 16:10:46 +00:00
T := Object_Word(B.Half_Word_Slot(I)) + Object_Word(Borrow);
if Object_Word(A.Half_Word_Slot(I)) >= T then
Z.Half_Word_Slot(I) := A.Half_Word_Slot(I) - Object_Half_Word(T);
2014-02-21 16:08:43 +00:00
Borrow := 0;
2014-02-25 16:10:46 +00:00
else
Z.Half_Word_Slot(I) := Object_Half_Word(Borrowed_Word + Object_Word(A.Half_Word_Slot(I)) - T);
Borrow := 1;
2014-02-21 16:08:43 +00:00
end if;
end loop;
for I in B.Size + 1 .. A.Size loop
2014-02-25 16:10:46 +00:00
if A.Half_Word_Slot(I) >= Borrow then
Z.Half_Word_Slot(I) := A.Half_Word_Slot(I) - Object_Half_Word(Borrow);
2014-02-21 16:08:43 +00:00
Borrow := 0;
2014-02-25 16:10:46 +00:00
else
Z.Half_Word_Slot(I) := Object_Half_Word(Borrowed_Word + Object_Word(A.Half_Word_Slot(I)) - Object_Word(Borrow));
Borrow := 1;
2014-02-21 16:08:43 +00:00
end if;
end loop;
2014-02-24 15:17:57 +00:00
2014-02-25 16:10:46 +00:00
pragma Assert (Borrow = 0);
2014-02-21 16:08:43 +00:00
return Z;
2014-02-23 16:57:31 +00:00
end Subtract_Unsigned;
2014-02-24 15:17:57 +00:00
function Multiply_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
A, B, Z: aliased Object_Pointer;
W: Object_Word;
Low, High: Object_Half_Word;
Carry: Object_Half_Word;
Index: Half_Word_Object_Size;
begin
Push_Top (Interp.all, A'Unchecked_Access);
Push_Top (Interp.all, B'Unchecked_Access);
Push_Top (Interp.all, Z'Unchecked_Access);
A := X;
B := Y;
Z := Make_Bigint (Interp.Self, A.Size + B.Size);
--for I in B.Half_Word_Slot'Range loop
for I in 1 .. B.Size loop
if B.Half_Word_Slot(I) = 0 then
Z.Half_Word_Slot(A.Size + I) := 0;
else
Carry := 0;
--for J in A.Half_Word_Slot'Range loop
for J in 1 .. A.Size loop
W := Object_Word(A.Half_Word_Slot(J)) * Object_Word(B.Half_Word_Slot(I));
Low := Get_Low(W);
High := Get_High(W);
Low := Low + Carry;
if Low < Carry then
High := High + 1;
end if;
Index := J + I - 1;
Low := Low + Z.Half_Word_Slot(Index);
if Low < Z.Half_Word_SLot(Index) then
High := High + 1;
end if;
Z.Half_Word_Slot(Index) := Low;
Carry := High;
end loop;
Z.Half_Word_Slot(A.Size + I) := Carry;
end if;
end loop;
Pop_Tops (Interp.all, 3);
return Z;
end Multiply_Unsigned;
2014-02-25 16:10:46 +00:00
function Divide_Unsigned (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
begin
return null;
end Divide_Unsigned;
2014-02-24 15:17:57 +00:00
-----------------------------------------------------------------------------
2014-02-23 16:57:31 +00:00
function Add (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
Z: Object_Pointer;
2014-02-24 15:17:57 +00:00
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
2014-02-23 16:57:31 +00:00
begin
2014-02-24 15:17:57 +00:00
Add_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
2014-02-23 16:57:31 +00:00
end if;
if A.Sign /= B.Sign then
if A.Sign = Negative_Sign then
Z := Subtract (Interp, B, A);
else
Z := Subtract (Interp, A, B);
end if;
else
2014-02-24 15:17:57 +00:00
Sign := A.Sign;
2014-02-23 16:57:31 +00:00
Z := Add_Unsigned (Interp, A, B);
2014-02-24 15:17:57 +00:00
Z.Sign := Sign;
2014-02-23 16:57:31 +00:00
end if;
2014-02-24 15:17:57 +00:00
return Normalize(Interp, Z);
2014-02-23 16:57:31 +00:00
end Add;
function Subtract (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
Z: Object_Pointer;
2014-02-24 15:17:57 +00:00
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
2014-02-23 16:57:31 +00:00
begin
2014-02-24 15:17:57 +00:00
Subtract_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
2014-02-23 16:57:31 +00:00
end if;
if A.Sign /= B.Sign then
2014-02-24 15:17:57 +00:00
Sign := A.Sign;
2014-02-23 16:57:31 +00:00
Z := Add_Unsigned (Interp, A, B);
2014-02-24 15:17:57 +00:00
Z.Sign := Sign;
2014-02-23 16:57:31 +00:00
else
if Is_Less_Unsigned(A, B) then
2014-02-24 15:17:57 +00:00
--Sign := Object_Sign'Val(not Object_Sign'Pos(A.Sign)); -- opposite A.Sign
2014-02-23 16:57:31 +00:00
if A.Sign = Negative_Sign then
2014-02-24 15:17:57 +00:00
Sign := Positive_Sign;
2014-02-23 16:57:31 +00:00
else
2014-02-24 15:17:57 +00:00
Sign := Negative_Sign;
2014-02-23 16:57:31 +00:00
end if;
2014-02-24 15:17:57 +00:00
Z := Subtract_Unsigned (Interp, B, A);
Z.Sign := Sign;
2014-02-23 16:57:31 +00:00
else
2014-02-24 15:17:57 +00:00
Sign := A.Sign;
2014-02-23 16:57:31 +00:00
Z := Subtract_Unsigned (Interp, A, B);
2014-02-24 15:17:57 +00:00
Z.Sign := Sign;
2014-02-23 16:57:31 +00:00
end if;
end if;
2014-02-21 16:08:43 +00:00
2014-02-24 15:17:57 +00:00
return Normalize(Interp, Z);
2014-02-23 16:57:31 +00:00
end Subtract;
2014-02-24 15:17:57 +00:00
function Multiply (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
Z: Object_Pointer;
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Multiply_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
end if;
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Z := Multiply_Unsigned (Interp, A, B);
Z.Sign := Sign;
return Normalize(Interp, Z);
end Multiply;
2014-02-25 16:10:46 +00:00
function Divide (Interp: access Interpreter_Record;
X: in Object_Pointer;
Y: in Object_Pointer) return Object_Pointer is
Z: Object_Pointer;
A: Object_Pointer := X;
B: Object_Pointer := Y;
Sign: Object_Sign;
begin
Divide_Integers (Interp, A, B, Z);
if Z /= null then
return Z;
end if;
-- Determine the sign earlier than any object allocation
-- to avoid GC side-effects because A and B are not pushed
-- as temporarry object pointers.
if A.Sign = B.Sign then
Sign := Positive_Sign;
else
Sign := Negative_Sign;
end if;
Z := Divide_Unsigned (Interp, A, B);
Z.Sign := Sign;
return Normalize(Interp, Z);
end Divide;
2014-02-20 14:51:53 +00:00
end Bigint;
2014-02-21 16:08:43 +00:00