2310 lines
63 KiB
C
2310 lines
63 KiB
C
/*
|
|
Copyright (c) 2006-2020 Chung, Hyung-Hwan. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
tre-compile.c - TRE regex compiler
|
|
|
|
This is the license, copyright notice, and disclaimer for TRE, a regex
|
|
matching package (library and tools) with support for approximate
|
|
matching.
|
|
|
|
Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <hawk-tre.h>
|
|
#include "tre-stack.h"
|
|
#include "tre-ast.h"
|
|
#include "tre-parse.h"
|
|
#include "tre-compile.h"
|
|
|
|
/*
|
|
Algorithms to setup tags so that submatch addressing can be done.
|
|
*/
|
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
|
As the left child a new tag with number `tag_id' to `node' is added,
|
|
and the right child is the old root. */
|
|
static reg_errcode_t
|
|
tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
|
{
|
|
tre_catenation_t *c;
|
|
|
|
DPRINT(("add_tag_left: tag %d\n", tag_id));
|
|
|
|
c = tre_mem_alloc(mem, sizeof(*c));
|
|
if (c == NULL) return REG_ESPACE;
|
|
c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
|
if (c->left == NULL) return REG_ESPACE;
|
|
c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
|
if (c->right == NULL) return REG_ESPACE;
|
|
|
|
c->right->obj = node->obj;
|
|
c->right->type = node->type;
|
|
c->right->nullable = -1;
|
|
c->right->submatch_id = -1;
|
|
c->right->firstpos = NULL;
|
|
c->right->lastpos = NULL;
|
|
c->right->num_tags = 0;
|
|
node->obj = c;
|
|
node->type = CATENATION;
|
|
return REG_OK;
|
|
}
|
|
|
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
|
As the right child a new tag with number `tag_id' to `node' is added,
|
|
and the left child is the old root. */
|
|
static reg_errcode_t
|
|
tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
|
{
|
|
tre_catenation_t *c;
|
|
|
|
DPRINT(("tre_add_tag_right: tag %d\n", tag_id));
|
|
|
|
c = tre_mem_alloc(mem, sizeof(*c));
|
|
if (c == NULL)
|
|
return REG_ESPACE;
|
|
c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
|
if (c->right == NULL)
|
|
return REG_ESPACE;
|
|
c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
|
if (c->left == NULL)
|
|
return REG_ESPACE;
|
|
|
|
c->left->obj = node->obj;
|
|
c->left->type = node->type;
|
|
c->left->nullable = -1;
|
|
c->left->submatch_id = -1;
|
|
c->left->firstpos = NULL;
|
|
c->left->lastpos = NULL;
|
|
c->left->num_tags = 0;
|
|
node->obj = c;
|
|
node->type = CATENATION;
|
|
return REG_OK;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
ADDTAGS_RECURSE,
|
|
ADDTAGS_AFTER_ITERATION,
|
|
ADDTAGS_AFTER_UNION_LEFT,
|
|
ADDTAGS_AFTER_UNION_RIGHT,
|
|
ADDTAGS_AFTER_CAT_LEFT,
|
|
ADDTAGS_AFTER_CAT_RIGHT,
|
|
ADDTAGS_SET_SUBMATCH_END
|
|
} tre_addtags_symbol_t;
|
|
|
|
typedef struct
|
|
{
|
|
int tag;
|
|
int next_tag;
|
|
} tre_tag_states_t;
|
|
|
|
|
|
/* Go through `regset' and set submatch data for submatches that are
|
|
using this tag. */
|
|
static void
|
|
tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; regset[i] >= 0; i++)
|
|
{
|
|
int id = regset[i] / 2;
|
|
int start = !(regset[i] % 2);
|
|
DPRINT((" Using tag %d for %s offset of "
|
|
"submatch %d\n", tag,
|
|
start ? "start" : "end", id));
|
|
if (start)
|
|
tnfa->submatch_data[id].so_tag = tag;
|
|
else
|
|
tnfa->submatch_data[id].eo_tag = tag;
|
|
}
|
|
regset[0] = -1;
|
|
}
|
|
|
|
|
|
/* Adds tags to appropriate locations in the parse tree in `tree', so that
|
|
subexpressions marked for submatch addressing can be traced. */
|
|
static reg_errcode_t
|
|
tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
|
|
tre_tnfa_t *tnfa, int first_pass)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
tre_addtags_symbol_t symbol;
|
|
tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
|
|
int bottom = tre_stack_num_objects(stack);
|
|
/* True for first pass (counting number of needed tags) */
|
|
/*int first_pass = (mem == NULL || tnfa == NULL);*/
|
|
int *regset, *orig_regset;
|
|
int num_tags = 0; /* Total number of tags. */
|
|
int num_minimals = 0; /* Number of special minimal tags. */
|
|
int tag = 0; /* The tag that is to be added next. */
|
|
int next_tag = 1; /* Next tag to use after this one. */
|
|
int *parents; /* Stack of submatches the current submatch is
|
|
contained in. */
|
|
int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
|
|
tre_tag_states_t *saved_states;
|
|
|
|
tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
|
|
if (!first_pass)
|
|
{
|
|
tnfa->end_tag = 0;
|
|
tnfa->minimal_tags[0] = -1;
|
|
}
|
|
|
|
regset = xmalloc(mem->gem, sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
|
|
if (regset == NULL)
|
|
return REG_ESPACE;
|
|
regset[0] = -1;
|
|
orig_regset = regset;
|
|
|
|
parents = xmalloc(mem->gem, sizeof(*parents) * (tnfa->num_submatches + 1));
|
|
if (parents == NULL)
|
|
{
|
|
xfree(mem->gem, regset);
|
|
return REG_ESPACE;
|
|
}
|
|
parents[0] = -1;
|
|
|
|
saved_states = xmalloc(mem->gem, sizeof(*saved_states) * (tnfa->num_submatches + 1));
|
|
if (saved_states == NULL)
|
|
{
|
|
xfree(mem->gem,regset);
|
|
xfree(mem->gem,parents);
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i <= tnfa->num_submatches; i++)
|
|
saved_states[i].tag = -1;
|
|
}
|
|
|
|
STACK_PUSH(stack, voidptr, node);
|
|
STACK_PUSH(stack, int, ADDTAGS_RECURSE);
|
|
|
|
while (tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
if (status != REG_OK)
|
|
break;
|
|
|
|
symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
|
switch (symbol)
|
|
{
|
|
|
|
case ADDTAGS_SET_SUBMATCH_END:
|
|
{
|
|
int id = tre_stack_pop_int(stack);
|
|
int i;
|
|
|
|
/* Add end of this submatch to regset. */
|
|
for (i = 0; regset[i] >= 0; i++);
|
|
regset[i] = id * 2 + 1;
|
|
regset[i + 1] = -1;
|
|
|
|
/* Pop this submatch from the parents stack. */
|
|
for (i = 0; parents[i] >= 0; i++);
|
|
parents[i - 1] = -1;
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_RECURSE:
|
|
node = tre_stack_pop_voidptr(stack);
|
|
|
|
if (node->submatch_id >= 0)
|
|
{
|
|
int id = node->submatch_id;
|
|
int i;
|
|
|
|
|
|
/* Add start of this submatch to regset. */
|
|
for (i = 0; regset[i] >= 0; i++);
|
|
regset[i] = id * 2;
|
|
regset[i + 1] = -1;
|
|
|
|
if (!first_pass)
|
|
{
|
|
for (i = 0; parents[i] >= 0; i++);
|
|
tnfa->submatch_data[id].parents = NULL;
|
|
if (i > 0)
|
|
{
|
|
int *p = xmalloc(mem->gem, sizeof(*p) * (i + 1));
|
|
if (p == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
assert(tnfa->submatch_data[id].parents == NULL);
|
|
tnfa->submatch_data[id].parents = p;
|
|
for (i = 0; parents[i] >= 0; i++)
|
|
p[i] = parents[i];
|
|
p[i] = -1;
|
|
}
|
|
}
|
|
|
|
/* Add end of this submatch to regset after processing this
|
|
node. */
|
|
STACK_PUSHX(stack, int, node->submatch_id);
|
|
STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
|
}
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = node->obj;
|
|
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
int i;
|
|
DPRINT(("Literal %d-%d\n",
|
|
(int)lit->code_min, (int)lit->code_max));
|
|
if (regset[0] >= 0)
|
|
{
|
|
/* Regset is not empty, so add a tag before the
|
|
literal or backref. */
|
|
if (!first_pass)
|
|
{
|
|
status = tre_add_tag_left(mem, node, tag);
|
|
tnfa->tag_directions[tag] = direction;
|
|
if (minimal_tag >= 0)
|
|
{
|
|
DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
else
|
|
{
|
|
DPRINT((" num_tags = 1\n"));
|
|
node->num_tags = 1;
|
|
}
|
|
|
|
DPRINT((" num_tags++\n"));
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(!IS_TAG(lit));
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
tre_ast_node_t *left = cat->left;
|
|
tre_ast_node_t *right = cat->right;
|
|
int reserved_tag = -1;
|
|
DPRINT(("Catenation, next_tag = %d\n", next_tag));
|
|
|
|
|
|
/* After processing right child. */
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
|
|
|
/* Process right child. */
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* After processing left child. */
|
|
STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
|
DPRINT((" Pushing %d for after left\n",
|
|
next_tag + left->num_tags));
|
|
if (left->num_tags > 0 && right->num_tags > 0)
|
|
{
|
|
/* Reserve the next tag to the right child. */
|
|
DPRINT((" Reserving next_tag %d to right child\n",
|
|
next_tag));
|
|
reserved_tag = next_tag;
|
|
next_tag++;
|
|
}
|
|
STACK_PUSHX(stack, int, reserved_tag);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
|
|
|
/* Process left child. */
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
break;
|
|
}
|
|
|
|
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
DPRINT(("Iteration\n"));
|
|
|
|
if (first_pass)
|
|
{
|
|
STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
|
}
|
|
else
|
|
{
|
|
STACK_PUSHX(stack, int, tag);
|
|
STACK_PUSHX(stack, int, iter->minimal);
|
|
}
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
|
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* Regset is not empty, so add a tag here. */
|
|
if (regset[0] >= 0 || iter->minimal)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
int i;
|
|
status = tre_add_tag_left(mem, node, tag);
|
|
if (iter->minimal)
|
|
tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
|
else
|
|
tnfa->tag_directions[tag] = direction;
|
|
if (minimal_tag >= 0)
|
|
{
|
|
DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
|
|
DPRINT((" num_tags++\n"));
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
direction = TRE_TAG_MINIMIZE;
|
|
break;
|
|
}
|
|
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
tre_ast_node_t *left = uni->left;
|
|
tre_ast_node_t *right = uni->right;
|
|
int left_tag;
|
|
int right_tag;
|
|
|
|
if (regset[0] >= 0)
|
|
{
|
|
left_tag = next_tag;
|
|
right_tag = next_tag + 1;
|
|
}
|
|
else
|
|
{
|
|
left_tag = tag;
|
|
right_tag = next_tag;
|
|
}
|
|
|
|
DPRINT(("Union\n"));
|
|
|
|
/* After processing right child. */
|
|
STACK_PUSHX(stack, int, right_tag);
|
|
STACK_PUSHX(stack, int, left_tag);
|
|
STACK_PUSHX(stack, voidptr, regset);
|
|
STACK_PUSHX(stack, int, regset[0] >= 0);
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
|
|
|
/* Process right child. */
|
|
STACK_PUSHX(stack, voidptr, right);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* After processing left child. */
|
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
|
|
|
/* Process left child. */
|
|
STACK_PUSHX(stack, voidptr, left);
|
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
|
|
|
/* Regset is not empty, so add a tag here. */
|
|
if (regset[0] >= 0)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
int i;
|
|
status = tre_add_tag_left(mem, node, tag);
|
|
tnfa->tag_directions[tag] = direction;
|
|
if (minimal_tag >= 0)
|
|
{
|
|
DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
}
|
|
|
|
DPRINT((" num_tags++\n"));
|
|
regset[0] = -1;
|
|
tag = next_tag;
|
|
num_tags++;
|
|
next_tag++;
|
|
}
|
|
|
|
if (node->num_submatches > 0)
|
|
{
|
|
/* The next two tags are reserved for markers. */
|
|
next_tag++;
|
|
tag = next_tag;
|
|
next_tag++;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (node->submatch_id >= 0)
|
|
{
|
|
int i;
|
|
/* Push this submatch on the parents stack. */
|
|
for (i = 0; parents[i] >= 0; i++);
|
|
parents[i] = node->submatch_id;
|
|
parents[i + 1] = -1;
|
|
}
|
|
|
|
break; /* end case: ADDTAGS_RECURSE */
|
|
|
|
case ADDTAGS_AFTER_ITERATION:
|
|
{
|
|
int minimal = 0;
|
|
int enter_tag;
|
|
node = tre_stack_pop_voidptr(stack);
|
|
if (first_pass)
|
|
{
|
|
node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags
|
|
+ tre_stack_pop_int(stack);
|
|
minimal_tag = -1;
|
|
}
|
|
else
|
|
{
|
|
minimal = tre_stack_pop_int(stack);
|
|
enter_tag = tre_stack_pop_int(stack);
|
|
if (minimal)
|
|
minimal_tag = enter_tag;
|
|
}
|
|
|
|
DPRINT(("After iteration\n"));
|
|
if (!first_pass)
|
|
{
|
|
DPRINT((" Setting direction to %s\n",
|
|
minimal ? "minimize" : "maximize"));
|
|
if (minimal)
|
|
direction = TRE_TAG_MINIMIZE;
|
|
else
|
|
direction = TRE_TAG_MAXIMIZE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_AFTER_CAT_LEFT:
|
|
{
|
|
int new_tag = tre_stack_pop_int(stack);
|
|
next_tag = tre_stack_pop_int(stack);
|
|
DPRINT(("After cat left, tag = %d, next_tag = %d\n",
|
|
tag, next_tag));
|
|
if (new_tag >= 0)
|
|
{
|
|
DPRINT((" Setting tag to %d\n", new_tag));
|
|
tag = new_tag;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ADDTAGS_AFTER_CAT_RIGHT:
|
|
DPRINT(("After cat right\n"));
|
|
node = tre_stack_pop_voidptr(stack);
|
|
if (first_pass)
|
|
node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags
|
|
+ ((tre_catenation_t *)node->obj)->right->num_tags;
|
|
break;
|
|
|
|
case ADDTAGS_AFTER_UNION_LEFT:
|
|
DPRINT(("After union left\n"));
|
|
/* Lift the bottom of the `regset' array so that when processing
|
|
the right operand the items currently in the array are
|
|
invisible. The original bottom was saved at ADDTAGS_UNION and
|
|
will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
|
|
while (*regset >= 0)
|
|
regset++;
|
|
break;
|
|
|
|
case ADDTAGS_AFTER_UNION_RIGHT:
|
|
{
|
|
int added_tags, tag_left, tag_right;
|
|
tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
|
|
tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
|
|
DPRINT(("After union right\n"));
|
|
node = tre_stack_pop_voidptr(stack);
|
|
added_tags = tre_stack_pop_int(stack);
|
|
if (first_pass)
|
|
{
|
|
node->num_tags = ((tre_union_t *)node->obj)->left->num_tags
|
|
+ ((tre_union_t *)node->obj)->right->num_tags + added_tags
|
|
+ ((node->num_submatches > 0) ? 2 : 0);
|
|
}
|
|
regset = tre_stack_pop_voidptr(stack);
|
|
tag_left = tre_stack_pop_int(stack);
|
|
tag_right = tre_stack_pop_int(stack);
|
|
|
|
/* Add tags after both children, the left child gets a smaller
|
|
tag than the right child. This guarantees that we prefer
|
|
the left child over the right child. */
|
|
/* XXX - This is not always necessary (if the children have
|
|
tags which must be seen for every match of that child). */
|
|
/* XXX - Check if this is the only place where tre_add_tag_right
|
|
is used. If so, use tre_add_tag_left (putting the tag before
|
|
the child as opposed after the child) and throw away
|
|
tre_add_tag_right. */
|
|
if (node->num_submatches > 0)
|
|
{
|
|
if (!first_pass)
|
|
{
|
|
status = tre_add_tag_right(mem, left, tag_left);
|
|
tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
|
status = tre_add_tag_right(mem, right, tag_right);
|
|
tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
|
}
|
|
DPRINT((" num_tags += 2\n"));
|
|
num_tags += 2;
|
|
}
|
|
direction = TRE_TAG_MAXIMIZE;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
|
|
} /* end switch(symbol) */
|
|
} /* end while(tre_stack_num_objects(stack) > bottom) */
|
|
|
|
if (!first_pass)
|
|
tre_purge_regset(regset, tnfa, tag);
|
|
|
|
if (!first_pass && minimal_tag >= 0)
|
|
{
|
|
int i;
|
|
DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
|
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
|
tnfa->minimal_tags[i] = tag;
|
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
|
tnfa->minimal_tags[i + 2] = -1;
|
|
minimal_tag = -1;
|
|
num_minimals++;
|
|
}
|
|
|
|
DPRINT(("tre_add_tags: %s complete. Number of tags %d.\n",
|
|
first_pass? "First pass" : "Second pass", num_tags));
|
|
|
|
assert(tree->num_tags == num_tags);
|
|
tnfa->end_tag = num_tags;
|
|
tnfa->num_tags = num_tags;
|
|
tnfa->num_minimals = num_minimals;
|
|
xfree(mem->gem,orig_regset);
|
|
xfree(mem->gem,parents);
|
|
xfree(mem->gem,saved_states);
|
|
return status;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
AST to TNFA compilation routines.
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
COPY_RECURSE,
|
|
COPY_SET_RESULT_PTR
|
|
} tre_copyast_symbol_t;
|
|
|
|
/* Flags for tre_copy_ast(). */
|
|
#define COPY_REMOVE_TAGS 1
|
|
#define COPY_MAXIMIZE_FIRST_TAG 2
|
|
|
|
static reg_errcode_t
|
|
tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
|
int flags, int *pos_add, tre_tag_direction_t *tag_directions,
|
|
tre_ast_node_t **copy, int *max_pos)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
int num_copied = 0;
|
|
int first_tag = 1;
|
|
tre_ast_node_t **result = copy;
|
|
tre_copyast_symbol_t symbol;
|
|
|
|
STACK_PUSH(stack, voidptr, ast);
|
|
STACK_PUSH(stack, int, COPY_RECURSE);
|
|
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_ast_node_t *node;
|
|
if (status != REG_OK)
|
|
break;
|
|
|
|
symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
|
switch (symbol)
|
|
{
|
|
case COPY_SET_RESULT_PTR:
|
|
result = tre_stack_pop_voidptr(stack);
|
|
break;
|
|
case COPY_RECURSE:
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = node->obj;
|
|
int pos = lit->position;
|
|
int min = lit->code_min;
|
|
int max = lit->code_max;
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
/* XXX - e.g. [ab] has only one position but two
|
|
nodes, so we are creating holes in the state space
|
|
here. Not fatal, just wastes memory. */
|
|
pos += *pos_add;
|
|
num_copied++;
|
|
}
|
|
else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS))
|
|
{
|
|
/* Change this tag to empty. */
|
|
min = EMPTY;
|
|
max = pos = -1;
|
|
}
|
|
else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG)
|
|
&& first_tag)
|
|
{
|
|
/* Maximize the first tag. */
|
|
tag_directions[max] = TRE_TAG_MAXIMIZE;
|
|
first_tag = 0;
|
|
}
|
|
*result = tre_ast_new_literal(mem, min, max, pos);
|
|
if (*result == NULL) status = REG_ESPACE;
|
|
|
|
/* HAWK */
|
|
((tre_literal_t*)(*result)->obj)->u.class = lit->u.class;
|
|
/* END HAWK */
|
|
if (pos > *max_pos)
|
|
*max_pos = pos;
|
|
break;
|
|
}
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
tre_union_t *tmp;
|
|
*result = tre_ast_new_union(mem, uni->left, uni->right);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
tmp = (*result)->obj;
|
|
result = &tmp->left;
|
|
STACK_PUSHX(stack, voidptr, uni->right);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
|
STACK_PUSHX(stack, voidptr, uni->left);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
break;
|
|
}
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
tre_catenation_t *tmp;
|
|
*result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
tmp = (*result)->obj;
|
|
tmp->left = NULL;
|
|
tmp->right = NULL;
|
|
result = &tmp->left;
|
|
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
break;
|
|
}
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
|
*result = tre_ast_new_iter(mem, iter->arg, iter->min,
|
|
iter->max, iter->minimal);
|
|
if (*result == NULL)
|
|
{
|
|
status = REG_ESPACE;
|
|
break;
|
|
}
|
|
iter = (*result)->obj;
|
|
result = &iter->arg;
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
*pos_add += num_copied;
|
|
return status;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
EXPAND_RECURSE,
|
|
EXPAND_AFTER_ITER
|
|
} tre_expand_ast_symbol_t;
|
|
|
|
/* Expands each iteration node that has a finite nonzero minimum or maximum
|
|
iteration count to a catenated sequence of copies of the node. */
|
|
static reg_errcode_t
|
|
tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
|
int *position, tre_tag_direction_t *tag_directions,
|
|
int *max_depth)
|
|
{
|
|
reg_errcode_t status = REG_OK;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
int pos_add = 0;
|
|
int pos_add_total = 0;
|
|
int max_pos = 0;
|
|
/* Current approximate matching parameters. */
|
|
int params[TRE_PARAM_LAST];
|
|
/* Approximate parameter nesting level. */
|
|
int params_depth = 0;
|
|
int iter_depth = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
params[i] = TRE_PARAM_DEFAULT;
|
|
|
|
STACK_PUSHR(stack, voidptr, ast);
|
|
STACK_PUSHR(stack, int, EXPAND_RECURSE);
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_ast_node_t *node;
|
|
tre_expand_ast_symbol_t symbol;
|
|
|
|
if (status != REG_OK)
|
|
break;
|
|
|
|
DPRINT(("pos_add %d\n", pos_add));
|
|
|
|
symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (symbol)
|
|
{
|
|
case EXPAND_RECURSE:
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit= node->obj;
|
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
|
{
|
|
lit->position += pos_add;
|
|
if (lit->position > max_pos)
|
|
max_pos = lit->position;
|
|
}
|
|
break;
|
|
}
|
|
case UNION:
|
|
{
|
|
tre_union_t *uni = node->obj;
|
|
STACK_PUSHX(stack, voidptr, uni->right);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, uni->left);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
break;
|
|
}
|
|
case CATENATION:
|
|
{
|
|
tre_catenation_t *cat = node->obj;
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
break;
|
|
}
|
|
case ITERATION:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
STACK_PUSHX(stack, int, pos_add);
|
|
STACK_PUSHX(stack, voidptr, node);
|
|
STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
|
/* If we are going to expand this node at EXPAND_AFTER_ITER
|
|
then don't increase the `pos' fields of the nodes now, it
|
|
will get done when expanding. */
|
|
if (iter->min > 1 || iter->max > 1)
|
|
pos_add = 0;
|
|
iter_depth++;
|
|
DPRINT(("iter\n"));
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
break;
|
|
case EXPAND_AFTER_ITER:
|
|
{
|
|
tre_iteration_t *iter = node->obj;
|
|
int pos_add_last;
|
|
pos_add = tre_stack_pop_int(stack);
|
|
pos_add_last = pos_add;
|
|
if (iter->min > 1 || iter->max > 1)
|
|
{
|
|
tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
|
int j;
|
|
int pos_add_save = pos_add;
|
|
|
|
/* Create a catenated sequence of copies of the node. */
|
|
for (j = 0; j < iter->min; j++)
|
|
{
|
|
tre_ast_node_t *copy;
|
|
/* Remove tags from all but the last copy. */
|
|
int flags = ((j + 1 < iter->min)
|
|
? COPY_REMOVE_TAGS
|
|
: COPY_MAXIMIZE_FIRST_TAG);
|
|
DPRINT((" pos_add %d\n", pos_add));
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, flags,
|
|
&pos_add, tag_directions, ©,
|
|
&max_pos);
|
|
if (status != REG_OK)
|
|
return status;
|
|
if (seq1 != NULL)
|
|
seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
|
else
|
|
seq1 = copy;
|
|
if (seq1 == NULL)
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
if (iter->max == -1)
|
|
{
|
|
/* No upper limit. */
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, 0,
|
|
&pos_add, NULL, &seq2, &max_pos);
|
|
if (status != REG_OK)
|
|
return status;
|
|
seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
|
if (seq2 == NULL)
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
for (j = iter->min; j < iter->max; j++)
|
|
{
|
|
tre_ast_node_t *tmp, *copy;
|
|
pos_add_save = pos_add;
|
|
status = tre_copy_ast(mem, stack, iter->arg, 0,
|
|
&pos_add, NULL, ©, &max_pos);
|
|
if (status != REG_OK)
|
|
return status;
|
|
if (seq2 != NULL)
|
|
seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
|
else
|
|
seq2 = copy;
|
|
if (seq2 == NULL)
|
|
return REG_ESPACE;
|
|
tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
|
if (tmp == NULL)
|
|
return REG_ESPACE;
|
|
seq2 = tre_ast_new_union(mem, tmp, seq2);
|
|
if (seq2 == NULL)
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
|
|
pos_add = pos_add_save;
|
|
if (seq1 == NULL)
|
|
seq1 = seq2;
|
|
else if (seq2 != NULL)
|
|
seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
|
if (seq1 == NULL)
|
|
return REG_ESPACE;
|
|
node->obj = seq1->obj;
|
|
node->type = seq1->type;
|
|
}
|
|
|
|
iter_depth--;
|
|
pos_add_total += pos_add - pos_add_last;
|
|
if (iter_depth == 0)
|
|
pos_add = pos_add_total;
|
|
|
|
/* If approximate parameters are specified, surround the result
|
|
with two parameter setting nodes. The one on the left sets
|
|
the specified parameters, and the one on the right restores
|
|
the old parameters. */
|
|
if (iter->params)
|
|
{
|
|
tre_ast_node_t *tmp_l, *tmp_r, *tmp_node, *node_copy;
|
|
int *old_params;
|
|
|
|
tmp_l = tre_ast_new_literal(mem, PARAMETER, 0, -1);
|
|
if (!tmp_l)
|
|
return REG_ESPACE;
|
|
((tre_literal_t *)tmp_l->obj)->u.params = iter->params;
|
|
iter->params[TRE_PARAM_DEPTH] = params_depth + 1;
|
|
tmp_r = tre_ast_new_literal(mem, PARAMETER, 0, -1);
|
|
if (!tmp_r)
|
|
return REG_ESPACE;
|
|
old_params = tre_mem_alloc(mem, sizeof(*old_params)
|
|
* TRE_PARAM_LAST);
|
|
if (!old_params)
|
|
return REG_ESPACE;
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
old_params[i] = params[i];
|
|
((tre_literal_t *)tmp_r->obj)->u.params = old_params;
|
|
old_params[TRE_PARAM_DEPTH] = params_depth;
|
|
/* XXX - this is the only place where ast_new_node is
|
|
needed -- should be moved inside AST module. */
|
|
node_copy = tre_ast_new_node(mem, ITERATION,
|
|
sizeof(tre_iteration_t));
|
|
if (!node_copy)
|
|
return REG_ESPACE;
|
|
node_copy->obj = node->obj;
|
|
tmp_node = tre_ast_new_catenation(mem, tmp_l, node_copy);
|
|
if (!tmp_node)
|
|
return REG_ESPACE;
|
|
tmp_node = tre_ast_new_catenation(mem, tmp_node, tmp_r);
|
|
if (!tmp_node)
|
|
return REG_ESPACE;
|
|
/* Replace the contents of `node' with `tmp_node'. */
|
|
HAWK_MEMCPY (node, tmp_node, sizeof(*node));
|
|
node->obj = tmp_node->obj;
|
|
node->type = tmp_node->type;
|
|
params_depth++;
|
|
if (params_depth > *max_depth)
|
|
*max_depth = params_depth;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
*position += pos_add_total;
|
|
|
|
/* `max_pos' should never be larger than `*position' if the above
|
|
code works, but just an extra safeguard let's make sure
|
|
`*position' is set large enough so enough memory will be
|
|
allocated for the transition table. */
|
|
if (max_pos > *position)
|
|
*position = max_pos;
|
|
|
|
#ifdef TRE_DEBUG
|
|
DPRINT(("Expanded AST:\n"));
|
|
tre_ast_print(ast);
|
|
DPRINT(("*position %d, max_pos %d\n", *position, max_pos));
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *
|
|
tre_set_empty(tre_mem_t mem)
|
|
{
|
|
tre_pos_and_tags_t *new_set;
|
|
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set));
|
|
if (new_set == NULL)
|
|
return NULL;
|
|
|
|
new_set[0].position = -1;
|
|
new_set[0].code_min = -1;
|
|
new_set[0].code_max = -1;
|
|
|
|
return new_set;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *
|
|
tre_set_one(tre_mem_t mem, int position, int code_min, int code_max,
|
|
tre_ctype_t class, tre_ctype_t *neg_classes, int backref)
|
|
{
|
|
tre_pos_and_tags_t *new_set;
|
|
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
|
|
if (new_set == NULL) return NULL;
|
|
|
|
new_set[0].position = position;
|
|
new_set[0].code_min = code_min;
|
|
new_set[0].code_max = code_max;
|
|
new_set[0].class = class;
|
|
new_set[0].neg_classes = neg_classes;
|
|
new_set[0].backref = backref;
|
|
new_set[1].position = -1;
|
|
new_set[1].code_min = -1;
|
|
new_set[1].code_max = -1;
|
|
|
|
return new_set;
|
|
}
|
|
|
|
static tre_pos_and_tags_t *
|
|
tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2,
|
|
int *tags, int assertions, int *params)
|
|
{
|
|
int s1, s2, i, j;
|
|
tre_pos_and_tags_t *new_set;
|
|
int *new_tags;
|
|
int num_tags;
|
|
|
|
for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++);
|
|
for (s1 = 0; set1[s1].position >= 0; s1++);
|
|
for (s2 = 0; set2[s2].position >= 0; s2++);
|
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
|
|
if (!new_set) return NULL;
|
|
|
|
for (s1 = 0; set1[s1].position >= 0; s1++)
|
|
{
|
|
new_set[s1].position = set1[s1].position;
|
|
new_set[s1].code_min = set1[s1].code_min;
|
|
new_set[s1].code_max = set1[s1].code_max;
|
|
new_set[s1].assertions = set1[s1].assertions | assertions;
|
|
new_set[s1].class = set1[s1].class;
|
|
new_set[s1].neg_classes = set1[s1].neg_classes;
|
|
new_set[s1].backref = set1[s1].backref;
|
|
if (set1[s1].tags == NULL && tags == NULL)
|
|
new_set[s1].tags = NULL;
|
|
else
|
|
{
|
|
for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++);
|
|
new_tags = tre_mem_alloc(mem, (sizeof(*new_tags)
|
|
* (i + num_tags + 1)));
|
|
if (new_tags == NULL)
|
|
return NULL;
|
|
for (j = 0; j < i; j++)
|
|
new_tags[j] = set1[s1].tags[j];
|
|
for (i = 0; i < num_tags; i++)
|
|
new_tags[j + i] = tags[i];
|
|
new_tags[j + i] = -1;
|
|
new_set[s1].tags = new_tags;
|
|
}
|
|
if (set1[s1].params)
|
|
new_set[s1].params = set1[s1].params;
|
|
if (params)
|
|
{
|
|
if (!new_set[s1].params)
|
|
new_set[s1].params = params;
|
|
else
|
|
{
|
|
new_set[s1].params = tre_mem_alloc(mem, sizeof(*params) *
|
|
TRE_PARAM_LAST);
|
|
if (!new_set[s1].params)
|
|
return NULL;
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
if (params[i] != TRE_PARAM_UNSET)
|
|
new_set[s1].params[i] = params[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (s2 = 0; set2[s2].position >= 0; s2++)
|
|
{
|
|
new_set[s1 + s2].position = set2[s2].position;
|
|
new_set[s1 + s2].code_min = set2[s2].code_min;
|
|
new_set[s1 + s2].code_max = set2[s2].code_max;
|
|
/* XXX - why not | assertions here as well? */
|
|
new_set[s1 + s2].assertions = set2[s2].assertions;
|
|
new_set[s1 + s2].class = set2[s2].class;
|
|
new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
|
new_set[s1 + s2].backref = set2[s2].backref;
|
|
if (set2[s2].tags == NULL)
|
|
new_set[s1 + s2].tags = NULL;
|
|
else
|
|
{
|
|
for (i = 0; set2[s2].tags[i] >= 0; i++);
|
|
new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
|
if (new_tags == NULL)
|
|
return NULL;
|
|
for (j = 0; j < i; j++)
|
|
new_tags[j] = set2[s2].tags[j];
|
|
new_tags[j] = -1;
|
|
new_set[s1 + s2].tags = new_tags;
|
|
}
|
|
if (set2[s2].params)
|
|
new_set[s1 + s2].params = set2[s2].params;
|
|
if (params)
|
|
{
|
|
if (!new_set[s1 + s2].params)
|
|
new_set[s1 + s2].params = params;
|
|
else
|
|
{
|
|
new_set[s1 + s2].params = tre_mem_alloc(mem, sizeof(*params) *
|
|
TRE_PARAM_LAST);
|
|
if (!new_set[s1 + s2].params)
|
|
return NULL;
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
if (params[i] != TRE_PARAM_UNSET)
|
|
new_set[s1 + s2].params[i] = params[i];
|
|
}
|
|
}
|
|
}
|
|
new_set[s1 + s2].position = -1;
|
|
return new_set;
|
|
}
|
|
|
|
/* Finds the empty path through `node' which is the one that should be
|
|
taken according to POSIX.2 rules, and adds the tags on that path to
|
|
`tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
|
|
set to the number of tags seen on the path. */
|
|
static reg_errcode_t
|
|
tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags,
|
|
int *assertions, int *params, int *num_tags_seen,
|
|
int *params_seen)
|
|
{
|
|
tre_literal_t *lit;
|
|
tre_union_t *uni;
|
|
tre_catenation_t *cat;
|
|
tre_iteration_t *iter;
|
|
int i;
|
|
int bottom = tre_stack_num_objects(stack);
|
|
reg_errcode_t status = REG_OK;
|
|
if (num_tags_seen)
|
|
*num_tags_seen = 0;
|
|
if (params_seen)
|
|
*params_seen = 0;
|
|
|
|
status = tre_stack_push_voidptr(stack, node);
|
|
|
|
/* Walk through the tree recursively. */
|
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
node = tre_stack_pop_voidptr(stack);
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
lit = (tre_literal_t *)node->obj;
|
|
switch (lit->code_min)
|
|
{
|
|
case TAG:
|
|
if (lit->code_max >= 0)
|
|
{
|
|
if (tags != NULL)
|
|
{
|
|
/* Add the tag to `tags'. */
|
|
for (i = 0; tags[i] >= 0; i++)
|
|
if (tags[i] == lit->code_max)
|
|
break;
|
|
if (tags[i] < 0)
|
|
{
|
|
tags[i] = lit->code_max;
|
|
tags[i + 1] = -1;
|
|
}
|
|
}
|
|
if (num_tags_seen)
|
|
(*num_tags_seen)++;
|
|
}
|
|
break;
|
|
case ASSERTION:
|
|
assert(lit->code_max >= 1
|
|
|| lit->code_max <= ASSERT_LAST);
|
|
if (assertions != NULL)
|
|
*assertions |= lit->code_max;
|
|
break;
|
|
case PARAMETER:
|
|
if (params != NULL)
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
params[i] = lit->u.params[i];
|
|
if (params_seen != NULL)
|
|
*params_seen = 1;
|
|
break;
|
|
case EMPTY:
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case UNION:
|
|
/* Subexpressions starting earlier take priority over ones
|
|
starting later, so we prefer the left subexpression over the
|
|
right subexpression. */
|
|
uni = (tre_union_t *)node->obj;
|
|
if (uni->left->nullable)
|
|
STACK_PUSHX(stack, voidptr, uni->left)
|
|
else if (uni->right->nullable)
|
|
STACK_PUSHX(stack, voidptr, uni->right)
|
|
else
|
|
assert(0);
|
|
break;
|
|
|
|
case CATENATION:
|
|
/* The path must go through both children. */
|
|
cat = (tre_catenation_t *)node->obj;
|
|
assert(cat->left->nullable);
|
|
assert(cat->right->nullable);
|
|
STACK_PUSHX(stack, voidptr, cat->left);
|
|
STACK_PUSHX(stack, voidptr, cat->right);
|
|
break;
|
|
|
|
case ITERATION:
|
|
/* A match with an empty string is preferred over no match at
|
|
all, so we go through the argument if possible. */
|
|
iter = (tre_iteration_t *)node->obj;
|
|
if (iter->arg->nullable)
|
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
typedef enum
|
|
{
|
|
NFL_RECURSE,
|
|
NFL_POST_UNION,
|
|
NFL_POST_CATENATION,
|
|
NFL_POST_ITERATION
|
|
} tre_nfl_stack_symbol_t;
|
|
|
|
|
|
/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
|
|
the nodes of the AST `tree'. */
|
|
static reg_errcode_t
|
|
tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree)
|
|
{
|
|
int bottom = tre_stack_num_objects(stack);
|
|
|
|
STACK_PUSHR(stack, voidptr, tree);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
|
|
while (tre_stack_num_objects(stack) > bottom)
|
|
{
|
|
tre_nfl_stack_symbol_t symbol;
|
|
tre_ast_node_t *node;
|
|
|
|
symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
|
node = tre_stack_pop_voidptr(stack);
|
|
switch (symbol)
|
|
{
|
|
case NFL_RECURSE:
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
{
|
|
tre_literal_t *lit = (tre_literal_t *)node->obj;
|
|
if (IS_BACKREF(lit))
|
|
{
|
|
/* Back references: nullable = false, firstpos = {i},
|
|
lastpos = {i}. */
|
|
node->nullable = 0;
|
|
node->firstpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
|
|
if (!node->firstpos) return REG_ESPACE;
|
|
node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, (int)lit->code_max);
|
|
if (!node->lastpos) return REG_ESPACE;
|
|
}
|
|
else if (lit->code_min < 0)
|
|
{
|
|
/* Tags, empty strings, params, and zero width assertions:
|
|
nullable = true, firstpos = {}, and lastpos = {}. */
|
|
node->nullable = 1;
|
|
node->firstpos = tre_set_empty(mem);
|
|
if (!node->firstpos)
|
|
return REG_ESPACE;
|
|
node->lastpos = tre_set_empty(mem);
|
|
if (!node->lastpos)
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
/* Literal at position i: nullable = false, firstpos = {i},
|
|
lastpos = {i}. */
|
|
node->nullable = 0;
|
|
node->firstpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, 0, NULL, -1);
|
|
if (!node->firstpos) return REG_ESPACE;
|
|
node->lastpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, lit->u.class, lit->neg_classes, -1);
|
|
if (!node->lastpos) return REG_ESPACE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case UNION:
|
|
/* Compute the attributes for the two subtrees, and after that
|
|
for this node. */
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_UNION);
|
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
break;
|
|
|
|
case CATENATION:
|
|
/* Compute the attributes for the two subtrees, and after that
|
|
for this node. */
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
|
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
break;
|
|
|
|
case ITERATION:
|
|
/* Compute the attributes for the subtree, and after that for
|
|
this node. */
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
|
STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
|
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
break;
|
|
}
|
|
break; /* end case: NFL_RECURSE */
|
|
|
|
case NFL_POST_UNION:
|
|
{
|
|
tre_union_t *uni = (tre_union_t *)node->obj;
|
|
node->nullable = uni->left->nullable || uni->right->nullable;
|
|
node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
|
uni->right->firstpos, NULL, 0, NULL);
|
|
if (!node->firstpos)
|
|
return REG_ESPACE;
|
|
node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
|
uni->right->lastpos, NULL, 0, NULL);
|
|
if (!node->lastpos)
|
|
return REG_ESPACE;
|
|
break;
|
|
}
|
|
|
|
case NFL_POST_ITERATION:
|
|
{
|
|
tre_iteration_t *iter = (tre_iteration_t *)node->obj;
|
|
|
|
if (iter->min == 0 || iter->arg->nullable)
|
|
node->nullable = 1;
|
|
else
|
|
node->nullable = 0;
|
|
node->firstpos = iter->arg->firstpos;
|
|
node->lastpos = iter->arg->lastpos;
|
|
break;
|
|
}
|
|
|
|
case NFL_POST_CATENATION:
|
|
{
|
|
int num_tags, *tags, assertions, params_seen;
|
|
int *params;
|
|
reg_errcode_t status;
|
|
tre_catenation_t *cat = node->obj;
|
|
node->nullable = cat->left->nullable && cat->right->nullable;
|
|
|
|
/* Compute firstpos. */
|
|
if (cat->left->nullable)
|
|
{
|
|
/* The left side matches the empty string. Make a first pass
|
|
with tre_match_empty() to get the number of tags and
|
|
parameters. */
|
|
status = tre_match_empty(stack, cat->left,
|
|
NULL, NULL, NULL, &num_tags,
|
|
¶ms_seen);
|
|
if (status != REG_OK)
|
|
return status;
|
|
/* Allocate arrays for the tags and parameters. */
|
|
tags = xmalloc(mem->gem, sizeof(*tags) * (num_tags + 1));
|
|
if (!tags)
|
|
return REG_ESPACE;
|
|
tags[0] = -1;
|
|
assertions = 0;
|
|
params = NULL;
|
|
if (params_seen)
|
|
{
|
|
params = tre_mem_alloc(mem, sizeof(*params)
|
|
* TRE_PARAM_LAST);
|
|
if (!params)
|
|
{
|
|
xfree(mem->gem,tags);
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
/* Second pass with tre_mach_empty() to get the list of
|
|
tags and parameters. */
|
|
status = tre_match_empty(stack, cat->left, tags,
|
|
&assertions, params, NULL, NULL);
|
|
if (status != REG_OK)
|
|
{
|
|
xfree(mem->gem,tags);
|
|
return status;
|
|
}
|
|
node->firstpos =
|
|
tre_set_union(mem, cat->right->firstpos, cat->left->firstpos,
|
|
tags, assertions, params);
|
|
xfree(mem->gem,tags);
|
|
if (!node->firstpos)
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
node->firstpos = cat->left->firstpos;
|
|
}
|
|
|
|
/* Compute lastpos. */
|
|
if (cat->right->nullable)
|
|
{
|
|
/* The right side matches the empty string. Make a first pass
|
|
with tre_match_empty() to get the number of tags and
|
|
parameters. */
|
|
status = tre_match_empty(stack, cat->right,
|
|
NULL, NULL, NULL, &num_tags,
|
|
¶ms_seen);
|
|
if (status != REG_OK)
|
|
return status;
|
|
/* Allocate arrays for the tags and parameters. */
|
|
tags = xmalloc(mem->gem,sizeof(int) * (num_tags + 1));
|
|
if (!tags)
|
|
return REG_ESPACE;
|
|
tags[0] = -1;
|
|
assertions = 0;
|
|
params = NULL;
|
|
if (params_seen)
|
|
{
|
|
params = tre_mem_alloc(mem, sizeof(*params)
|
|
* TRE_PARAM_LAST);
|
|
if (!params)
|
|
{
|
|
xfree(mem->gem,tags);
|
|
return REG_ESPACE;
|
|
}
|
|
}
|
|
/* Second pass with tre_mach_empty() to get the list of
|
|
tags and parameters. */
|
|
status = tre_match_empty(stack, cat->right, tags,
|
|
&assertions, params, NULL, NULL);
|
|
if (status != REG_OK)
|
|
{
|
|
xfree(mem->gem,tags);
|
|
return status;
|
|
}
|
|
node->lastpos =
|
|
tre_set_union(mem, cat->left->lastpos, cat->right->lastpos,
|
|
tags, assertions, params);
|
|
xfree(mem->gem,tags);
|
|
if (!node->lastpos)
|
|
return REG_ESPACE;
|
|
}
|
|
else
|
|
{
|
|
node->lastpos = cat->right->lastpos;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return REG_OK;
|
|
}
|
|
|
|
|
|
/* Adds a transition from each position in `p1' to each position in `p2'. */
|
|
static reg_errcode_t
|
|
tre_make_trans(hawk_gem_t* gem, tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
|
|
tre_tnfa_transition_t *transitions,
|
|
int *counts, int *offs)
|
|
{
|
|
tre_pos_and_tags_t *orig_p2 = p2;
|
|
tre_tnfa_transition_t *trans;
|
|
int i, j, k, l, dup, prev_p2_pos;
|
|
|
|
if (transitions != NULL)
|
|
{
|
|
while (p1->position >= 0)
|
|
{
|
|
p2 = orig_p2;
|
|
prev_p2_pos = -1;
|
|
while (p2->position >= 0)
|
|
{
|
|
/* Optimization: if this position was already handled, skip it. */
|
|
if (p2->position == prev_p2_pos)
|
|
{
|
|
p2++;
|
|
continue;
|
|
}
|
|
prev_p2_pos = p2->position;
|
|
/* Set `trans' to point to the next unused transition from
|
|
position `p1->position'. */
|
|
trans = transitions + offs[p1->position];
|
|
while (trans->state != NULL)
|
|
{
|
|
#if 0
|
|
/* If we find a previous transition from `p1->position' to
|
|
`p2->position', it is overwritten. This can happen only
|
|
if there are nested loops in the regexp, like in "((a)*)*".
|
|
In POSIX.2 repetition using the outer loop is always
|
|
preferred over using the inner loop. Therefore the
|
|
transition for the inner loop is useless and can be thrown
|
|
away. */
|
|
/* XXX - The same position is used for all nodes in a bracket
|
|
expression, so this optimization cannot be used (it will
|
|
break bracket expressions) unless I figure out a way to
|
|
detect it here. */
|
|
if (trans->state_id == p2->position)
|
|
{
|
|
DPRINT(("*"));
|
|
break;
|
|
}
|
|
#endif
|
|
trans++;
|
|
}
|
|
|
|
if (trans->state == NULL)
|
|
(trans + 1)->state = NULL;
|
|
/* Use the character ranges, assertions, etc. from `p1' for
|
|
the transition from `p1' to `p2'. */
|
|
trans->code_min = p1->code_min;
|
|
trans->code_max = p1->code_max;
|
|
trans->state = transitions + offs[p2->position];
|
|
trans->state_id = p2->position;
|
|
trans->assertions = p1->assertions | p2->assertions
|
|
| (p1->class ? ASSERT_CHAR_CLASS : 0)
|
|
| (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
|
if (p1->backref >= 0)
|
|
{
|
|
assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
|
assert(p2->backref < 0);
|
|
trans->u.backref = p1->backref;
|
|
trans->assertions |= ASSERT_BACKREF;
|
|
}
|
|
else
|
|
trans->u.class = p1->class;
|
|
if (p1->neg_classes != NULL)
|
|
{
|
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++);
|
|
trans->neg_classes = xmalloc(gem,sizeof(*trans->neg_classes) * (i + 1));
|
|
if (trans->neg_classes == NULL) return REG_ESPACE;
|
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
|
trans->neg_classes[i] = p1->neg_classes[i];
|
|
trans->neg_classes[i] = (tre_ctype_t)0;
|
|
}
|
|
else
|
|
trans->neg_classes = NULL;
|
|
|
|
/* Find out how many tags this transition has. */
|
|
i = 0;
|
|
if (p1->tags != NULL)
|
|
while(p1->tags[i] >= 0)
|
|
i++;
|
|
j = 0;
|
|
if (p2->tags != NULL)
|
|
while(p2->tags[j] >= 0)
|
|
j++;
|
|
|
|
/* If we are overwriting a transition, free the old tag array. */
|
|
if (trans->tags != NULL) xfree(gem,trans->tags);
|
|
trans->tags = NULL;
|
|
|
|
/* If there were any tags, allocate an array and fill it. */
|
|
if (i + j > 0)
|
|
{
|
|
trans->tags = xmalloc(gem,sizeof(*trans->tags) * (i + j + 1));
|
|
if (!trans->tags)
|
|
return REG_ESPACE;
|
|
i = 0;
|
|
if (p1->tags != NULL)
|
|
while(p1->tags[i] >= 0)
|
|
{
|
|
trans->tags[i] = p1->tags[i];
|
|
i++;
|
|
}
|
|
l = i;
|
|
j = 0;
|
|
if (p2->tags != NULL)
|
|
while (p2->tags[j] >= 0)
|
|
{
|
|
/* Don't add duplicates. */
|
|
dup = 0;
|
|
for (k = 0; k < i; k++)
|
|
if (trans->tags[k] == p2->tags[j])
|
|
{
|
|
dup = 1;
|
|
break;
|
|
}
|
|
if (!dup)
|
|
trans->tags[l++] = p2->tags[j];
|
|
j++;
|
|
}
|
|
trans->tags[l] = -1;
|
|
}
|
|
|
|
/* Set the parameter array. If both `p2' and `p1' have same
|
|
parameters, the values in `p2' override those in `p1'. */
|
|
if (p1->params || p2->params)
|
|
{
|
|
if (!trans->params)
|
|
trans->params = xmalloc(gem,sizeof(*trans->params) * TRE_PARAM_LAST);
|
|
if (!trans->params)
|
|
return REG_ESPACE;
|
|
for (i = 0; i < TRE_PARAM_LAST; i++)
|
|
{
|
|
trans->params[i] = TRE_PARAM_UNSET;
|
|
if (p1->params && p1->params[i] != TRE_PARAM_UNSET)
|
|
trans->params[i] = p1->params[i];
|
|
if (p2->params && p2->params[i] != TRE_PARAM_UNSET)
|
|
trans->params[i] = p2->params[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (trans->params) xfree(gem,trans->params);
|
|
trans->params = NULL;
|
|
}
|
|
|
|
|
|
#ifdef TRE_DEBUG
|
|
{
|
|
int *tags;
|
|
|
|
DPRINT((" %2d -> %2d on %3d", p1->position, p2->position,
|
|
(int)p1->code_min));
|
|
if (p1->code_max != p1->code_min)
|
|
DPRINT(("-%3d", (int)p1->code_max));
|
|
tags = trans->tags;
|
|
if (tags)
|
|
{
|
|
DPRINT((", tags ["));
|
|
while (*tags >= 0)
|
|
{
|
|
DPRINT(("%d", *tags));
|
|
tags++;
|
|
if (*tags >= 0)
|
|
DPRINT((","));
|
|
}
|
|
DPRINT(("]"));
|
|
}
|
|
if (trans->assertions)
|
|
DPRINT((", assert %d", trans->assertions));
|
|
if (trans->assertions & ASSERT_BACKREF)
|
|
DPRINT((", backref %d", trans->u.backref));
|
|
else if (trans->u.class)
|
|
DPRINT((", class %ld", (long)trans->u.class));
|
|
if (trans->neg_classes)
|
|
DPRINT((", neg_classes %p", trans->neg_classes));
|
|
if (trans->params)
|
|
{
|
|
DPRINT((", "));
|
|
tre_print_params(trans->params);
|
|
}
|
|
DPRINT(("\n"));
|
|
}
|
|
#endif /* TRE_DEBUG */
|
|
p2++;
|
|
}
|
|
p1++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Compute a maximum limit for the number of transitions leaving
|
|
from each state. */
|
|
while (p1->position >= 0)
|
|
{
|
|
p2 = orig_p2;
|
|
while (p2->position >= 0)
|
|
{
|
|
counts[p1->position]++;
|
|
p2++;
|
|
}
|
|
p1++;
|
|
}
|
|
}
|
|
return REG_OK;
|
|
}
|
|
|
|
/* Converts the syntax tree to a TNFA. All the transitions in the TNFA are
|
|
labelled with one character range (there are no transitions on empty
|
|
strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
|
|
the regexp. */
|
|
/* HAWK */
|
|
#if 0
|
|
static reg_errcode_t
|
|
tre_ast_to_tnfa(hawk_gem_t* gem, tre_ast_node_t *node, tre_tnfa_transition_t *transitions,
|
|
int *counts, int *offs)
|
|
{
|
|
tre_union_t *uni;
|
|
tre_catenation_t *cat;
|
|
tre_iteration_t *iter;
|
|
reg_errcode_t errcode = REG_OK;
|
|
|
|
/* XXX - recurse using a stack!. */
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
break;
|
|
case UNION:
|
|
uni = (tre_union_t *)node->obj;
|
|
errcode = tre_ast_to_tnfa(gem, uni->left, transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
return errcode;
|
|
errcode = tre_ast_to_tnfa(gem, uni->right, transitions, counts, offs);
|
|
break;
|
|
|
|
case CATENATION:
|
|
cat = (tre_catenation_t *)node->obj;
|
|
/* Add a transition from each position in cat->left->lastpos
|
|
to each position in cat->right->firstpos. */
|
|
errcode = tre_make_trans(gem, cat->left->lastpos, cat->right->firstpos,
|
|
transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
return errcode;
|
|
errcode = tre_ast_to_tnfa(gem, cat->left, transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
return errcode;
|
|
errcode = tre_ast_to_tnfa(gem, cat->right, transitions, counts, offs);
|
|
break;
|
|
|
|
case ITERATION:
|
|
iter = (tre_iteration_t *)node->obj;
|
|
assert(iter->max == -1 || iter->max == 1);
|
|
|
|
if (iter->max == -1)
|
|
{
|
|
assert(iter->min == 0 || iter->min == 1);
|
|
/* Add a transition from each last position in the iterated
|
|
expression to each first position. */
|
|
errcode = tre_make_trans(gem, iter->arg->lastpos, iter->arg->firstpos,
|
|
transitions, counts, offs);
|
|
if (errcode != REG_OK)
|
|
return errcode;
|
|
}
|
|
errcode = tre_ast_to_tnfa(gem, iter->arg, transitions, counts, offs);
|
|
break;
|
|
}
|
|
return errcode;
|
|
}
|
|
#endif
|
|
static reg_errcode_t
|
|
__tre_ast_to_tnfa(hawk_gem_t *gem, tre_stack_t* stack, tre_ast_node_t *node, tre_tnfa_transition_t *transitions, int *counts, int *offs)
|
|
{
|
|
tre_union_t *uni;
|
|
tre_catenation_t *cat;
|
|
tre_iteration_t *iter;
|
|
reg_errcode_t errcode = REG_OK;
|
|
|
|
STACK_PUSHR(stack, voidptr, node);
|
|
|
|
while (tre_stack_num_objects(stack))
|
|
{
|
|
node = (tre_ast_node_t*)tre_stack_pop_voidptr(stack);
|
|
|
|
switch (node->type)
|
|
{
|
|
case LITERAL:
|
|
break;
|
|
|
|
case UNION:
|
|
uni = (tre_union_t *)node->obj;
|
|
STACK_PUSHR(stack, voidptr, uni->right);
|
|
STACK_PUSHR(stack, voidptr, uni->left);
|
|
break;
|
|
|
|
case CATENATION:
|
|
cat = (tre_catenation_t *)node->obj;
|
|
/* Add a transition from each position in cat->left->lastpos to each position in cat->right->firstpos. */
|
|
errcode = tre_make_trans(gem, cat->left->lastpos, cat->right->firstpos, transitions, counts, offs);
|
|
if (errcode != REG_OK) return errcode;
|
|
|
|
STACK_PUSHR(stack, voidptr, cat->right);
|
|
STACK_PUSHR(stack, voidptr, cat->left);
|
|
break;
|
|
|
|
case ITERATION:
|
|
iter = (tre_iteration_t *)node->obj;
|
|
if(!(iter->max == -1 || iter->max == 1)) return REG_BADBR;
|
|
|
|
if (iter->max == -1)
|
|
{
|
|
if(!(iter->min == 0 || iter->min == 1)) return REG_BADBR;
|
|
/* Add a transition from each last position in the iterated expression to each first position. */
|
|
errcode = tre_make_trans(gem, iter->arg->lastpos, iter->arg->firstpos, transitions, counts, offs);
|
|
if (errcode != REG_OK) return errcode;
|
|
}
|
|
STACK_PUSHR(stack, voidptr, iter->arg);
|
|
break;
|
|
}
|
|
}
|
|
return REG_OK;
|
|
}
|
|
|
|
static reg_errcode_t
|
|
tre_ast_to_tnfa(hawk_gem_t* gem, tre_ast_node_t *node, tre_tnfa_transition_t *transitions, int *counts, int *offs)
|
|
{
|
|
reg_errcode_t x;
|
|
tre_stack_t* stack;
|
|
|
|
stack = tre_stack_new(gem, 1024, -1, 4096);
|
|
if (HAWK_UNLIKELY(!stack)) return REG_ESPACE;
|
|
|
|
x = __tre_ast_to_tnfa(gem, stack, node, transitions, counts, offs);
|
|
|
|
tre_stack_destroy(stack);
|
|
return x;
|
|
}
|
|
/* END HAWK */
|
|
|
|
#define ERROR_EXIT(err) \
|
|
do \
|
|
{ \
|
|
errcode = err; \
|
|
if (/*CONSTCOND*/1) \
|
|
goto error_exit; \
|
|
} \
|
|
while (/*CONSTCOND*/0)
|
|
|
|
|
|
int tre_compile (regex_t *preg, const tre_char_t *regex, size_t n, int cflags)
|
|
{
|
|
tre_stack_t *stack;
|
|
tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
|
|
tre_pos_and_tags_t *p;
|
|
int *counts = NULL, *offs = NULL;
|
|
int i, add = 0;
|
|
tre_tnfa_transition_t *transitions, *initial;
|
|
tre_tnfa_t *tnfa = NULL;
|
|
tre_submatch_data_t *submatch_data;
|
|
tre_tag_direction_t *tag_directions = NULL;
|
|
reg_errcode_t errcode;
|
|
tre_mem_t mem;
|
|
|
|
/* Parse context. */
|
|
tre_parse_ctx_t parse_ctx;
|
|
|
|
/* Allocate a stack used throughout the compilation process for various
|
|
purposes. */
|
|
/* HAWK: deleted limit on the stack size
|
|
stack = tre_stack_new(preg->gem, 512, 10240, 128); */
|
|
stack = tre_stack_new(preg->gem, 512, -1, 128);
|
|
if (HAWK_UNLIKELY(!stack)) return REG_ESPACE;
|
|
/* Allocate a fast memory allocator. */
|
|
mem = tre_mem_new(preg->gem);
|
|
if (HAWK_UNLIKELY(!mem))
|
|
{
|
|
tre_stack_destroy(stack);
|
|
return REG_ESPACE;
|
|
}
|
|
|
|
/* Parse the regexp. */
|
|
HAWK_MEMSET(&parse_ctx, 0, sizeof(parse_ctx));
|
|
parse_ctx.mem = mem;
|
|
parse_ctx.stack = stack;
|
|
parse_ctx.re = regex;
|
|
parse_ctx.len = n;
|
|
parse_ctx.cflags = cflags;
|
|
parse_ctx.max_backref = -1;
|
|
DPRINT(("tre_compile: parsing '%.*" STRF "'\n", (int)n, regex));
|
|
errcode = tre_parse(&parse_ctx);
|
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
|
preg->re_nsub = parse_ctx.submatch_id - 1;
|
|
tree = parse_ctx.result;
|
|
|
|
/* Back references and approximate matching cannot currently be used
|
|
in the same regexp. */
|
|
if (parse_ctx.max_backref >= 0 && parse_ctx.have_approx)
|
|
ERROR_EXIT(REG_BADPAT);
|
|
|
|
#ifdef TRE_DEBUG
|
|
tre_ast_print(tree);
|
|
#endif /* TRE_DEBUG */
|
|
|
|
/* Referring to nonexistent subexpressions is illegal. */
|
|
if (parse_ctx.max_backref > (int)preg->re_nsub)
|
|
ERROR_EXIT(REG_ESUBREG);
|
|
|
|
/* Allocate the TNFA struct. */
|
|
tnfa = xcalloc(preg->gem, 1, sizeof(tre_tnfa_t));
|
|
if (HAWK_UNLIKELY(!tnfa)) ERROR_EXIT(REG_ESPACE);
|
|
|
|
tnfa->have_backrefs = parse_ctx.max_backref >= 0;
|
|
tnfa->have_approx = parse_ctx.have_approx;
|
|
tnfa->num_submatches = parse_ctx.submatch_id;
|
|
|
|
/* Set up tags for submatch addressing. If REG_NOSUB is set and the
|
|
regexp does not have back references, this can be skipped. */
|
|
if (tnfa->have_backrefs || !(cflags & REG_NOSUB))
|
|
{
|
|
DPRINT(("tre_compile: setting up tags\n"));
|
|
|
|
/* Figure out how many tags we will need. */
|
|
/*errcode = tre_add_tags(NULL, stack, tree, tnfa); */
|
|
errcode = tre_add_tags(mem, stack, tree, tnfa, 1);
|
|
if (errcode != REG_OK)
|
|
ERROR_EXIT(errcode);
|
|
#ifdef TRE_DEBUG
|
|
tre_ast_print(tree);
|
|
#endif /* TRE_DEBUG */
|
|
|
|
if (tnfa->num_tags > 0)
|
|
{
|
|
tag_directions = xmalloc(preg->gem,sizeof(*tag_directions)
|
|
* (tnfa->num_tags + 1));
|
|
if (tag_directions == NULL) ERROR_EXIT(REG_ESPACE);
|
|
tnfa->tag_directions = tag_directions;
|
|
HAWK_MEMSET(tag_directions, -1, sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
|
}
|
|
tnfa->minimal_tags = xcalloc(preg->gem, (unsigned)tnfa->num_tags * 2 + 1,
|
|
sizeof(tnfa->minimal_tags));
|
|
if (tnfa->minimal_tags == NULL)
|
|
ERROR_EXIT(REG_ESPACE);
|
|
|
|
submatch_data = xcalloc(preg->gem,(unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
|
|
if (HAWK_UNLIKELY(!submatch_data)) ERROR_EXIT(REG_ESPACE);
|
|
tnfa->submatch_data = submatch_data;
|
|
|
|
errcode = tre_add_tags(mem, stack, tree, tnfa, 0);
|
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
|
|
|
#ifdef TRE_DEBUG
|
|
for (i = 0; i < parse_ctx.submatch_id; i++)
|
|
DPRINT(("pmatch[%d] = {t%d, t%d}\n",
|
|
i, submatch_data[i].so_tag, submatch_data[i].eo_tag));
|
|
for (i = 0; i < tnfa->num_tags; i++)
|
|
DPRINT(("t%d is %s\n", i,
|
|
tag_directions[i] == TRE_TAG_MINIMIZE ?
|
|
"minimized" : "maximized"));
|
|
#endif /* TRE_DEBUG */
|
|
}
|
|
|
|
/* Expand iteration nodes. */
|
|
errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions, &tnfa->params_depth);
|
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
|
|
|
/* Add a dummy node for the final state.
|
|
XXX - For certain patterns this dummy node can be optimized away,
|
|
for example "a*" or "ab*". Figure out a simple way to detect
|
|
this possibility. */
|
|
tmp_ast_l = tree;
|
|
tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
|
|
if (HAWK_UNLIKELY(!tmp_ast_r)) ERROR_EXIT(REG_ESPACE);
|
|
|
|
tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
|
|
if (HAWK_UNLIKELY(!tree)) ERROR_EXIT(REG_ESPACE);
|
|
|
|
#ifdef TRE_DEBUG
|
|
tre_ast_print(tree);
|
|
DPRINT(("Number of states: %d\n", parse_ctx.position));
|
|
#endif /* TRE_DEBUG */
|
|
|
|
errcode = tre_compute_nfl(mem, stack, tree);
|
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
|
|
|
counts = xmalloc(preg->gem,sizeof(int) * parse_ctx.position);
|
|
if (HAWK_UNLIKELY(!counts)) ERROR_EXIT(REG_ESPACE);
|
|
|
|
offs = xmalloc(preg->gem,sizeof(int) * parse_ctx.position);
|
|
if (HAWK_UNLIKELY(!offs)) ERROR_EXIT(REG_ESPACE);
|
|
|
|
for (i = 0; i < parse_ctx.position; i++)
|
|
counts[i] = 0;
|
|
tre_ast_to_tnfa(preg->gem, tree, NULL, counts, NULL);
|
|
|
|
add = 0;
|
|
for (i = 0; i < parse_ctx.position; i++)
|
|
{
|
|
offs[i] = add;
|
|
add += counts[i] + 1;
|
|
counts[i] = 0;
|
|
}
|
|
transitions = xcalloc(preg->gem, (unsigned)add + 1, sizeof(*transitions));
|
|
if (HAWK_UNLIKELY(!transitions)) ERROR_EXIT(REG_ESPACE);
|
|
tnfa->transitions = transitions;
|
|
tnfa->num_transitions = add;
|
|
|
|
DPRINT(("Converting to TNFA:\n"));
|
|
errcode = tre_ast_to_tnfa(preg->gem, tree, transitions, counts, offs);
|
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
|
|
|
/* If in eight bit mode, compute a table of characters that can be the
|
|
first character of a match. */
|
|
tnfa->first_char = -1;
|
|
|
|
/* HAWK: deleted */
|
|
/*
|
|
if (TRE_MB_CUR_MAX == 1 && !tmp_ast_l->nullable)
|
|
{
|
|
int count = 0;
|
|
tre_cint_t k;
|
|
DPRINT(("Characters that can start a match:"));
|
|
tnfa->firstpos_chars = xcalloc(preg->gem, 256, sizeof(char));
|
|
if (tnfa->firstpos_chars == NULL)
|
|
ERROR_EXIT(REG_ESPACE);
|
|
for (p = tree->firstpos; p->position >= 0; p++)
|
|
{
|
|
tre_tnfa_transition_t *j = transitions + offs[p->position];
|
|
while (j->state != NULL)
|
|
{
|
|
for (k = j->code_min; k <= j->code_max && k < 256; k++)
|
|
{
|
|
DPRINT((" %d", k));
|
|
tnfa->firstpos_chars[k] = 1;
|
|
count++;
|
|
}
|
|
j++;
|
|
}
|
|
}
|
|
DPRINT(("\n"));
|
|
#define TRE_OPTIMIZE_FIRST_CHAR 1
|
|
#if TRE_OPTIMIZE_FIRST_CHAR
|
|
if (count == 1)
|
|
{
|
|
for (k = 0; k < 256; k++)
|
|
if (tnfa->firstpos_chars[k])
|
|
{
|
|
DPRINT(("first char must be %d\n", k));
|
|
tnfa->first_char = k;
|
|
xfree(preg->gem,tnfa->firstpos_chars);
|
|
tnfa->firstpos_chars = NULL;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
else
|
|
tnfa->firstpos_chars = NULL;
|
|
*/
|
|
/* END HAWK */
|
|
|
|
|
|
p = tree->firstpos;
|
|
i = 0;
|
|
while (p->position >= 0)
|
|
{
|
|
i++;
|
|
|
|
#ifdef TRE_DEBUG
|
|
{
|
|
int *tags;
|
|
DPRINT(("initial: %d", p->position));
|
|
tags = p->tags;
|
|
if (tags != NULL)
|
|
{
|
|
if (*tags >= 0)
|
|
DPRINT(("/"));
|
|
while (*tags >= 0)
|
|
{
|
|
DPRINT(("%d", *tags));
|
|
tags++;
|
|
if (*tags >= 0)
|
|
DPRINT((","));
|
|
}
|
|
}
|
|
DPRINT((", assert %d", p->assertions));
|
|
if (p->params)
|
|
{
|
|
DPRINT((", "));
|
|
tre_print_params(p->params);
|
|
}
|
|
DPRINT(("\n"));
|
|
}
|
|
#endif /* TRE_DEBUG */
|
|
|
|
p++;
|
|
}
|
|
|
|
initial = xcalloc(preg->gem, (unsigned)i + 1, sizeof(tre_tnfa_transition_t));
|
|
if (HAWK_UNLIKELY(!initial)) ERROR_EXIT(REG_ESPACE);
|
|
tnfa->initial = initial;
|
|
|
|
i = 0;
|
|
for (p = tree->firstpos; p->position >= 0; p++)
|
|
{
|
|
initial[i].state = transitions + offs[p->position];
|
|
initial[i].state_id = p->position;
|
|
initial[i].tags = NULL;
|
|
/* Copy the arrays p->tags, and p->params, they are allocated
|
|
from a tre_mem object. */
|
|
if (p->tags)
|
|
{
|
|
int j;
|
|
for (j = 0; p->tags[j] >= 0; j++);
|
|
initial[i].tags = xmalloc(preg->gem,sizeof(*p->tags) * (j + 1));
|
|
if (HAWK_UNLIKELY(!initial[i].tags)) ERROR_EXIT(REG_ESPACE);
|
|
HAWK_MEMCPY (initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
|
}
|
|
initial[i].params = NULL;
|
|
if (p->params)
|
|
{
|
|
initial[i].params = xmalloc(preg->gem,sizeof(*p->params) * TRE_PARAM_LAST);
|
|
if (HAWK_UNLIKELY(!initial[i].params)) ERROR_EXIT(REG_ESPACE);
|
|
HAWK_MEMCPY (initial[i].params, p->params, sizeof(*p->params) * TRE_PARAM_LAST);
|
|
}
|
|
initial[i].assertions = p->assertions;
|
|
i++;
|
|
}
|
|
initial[i].state = NULL;
|
|
|
|
tnfa->num_transitions = add;
|
|
tnfa->final = transitions + offs[tree->lastpos[0].position];
|
|
tnfa->num_states = parse_ctx.position;
|
|
tnfa->cflags = cflags;
|
|
|
|
DPRINT(("final state %p\n", (void *)tnfa->final));
|
|
|
|
tre_mem_destroy(mem);
|
|
tre_stack_destroy(stack);
|
|
xfree(preg->gem,counts);
|
|
xfree(preg->gem,offs);
|
|
|
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
|
return REG_OK;
|
|
|
|
error_exit:
|
|
/* Free everything that was allocated and return the error code. */
|
|
tre_mem_destroy(mem);
|
|
if (stack) tre_stack_destroy(stack);
|
|
if (counts) xfree(preg->gem,counts);
|
|
if (offs) xfree(preg->gem,offs);
|
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
|
tre_free(preg);
|
|
return errcode;
|
|
}
|
|
|
|
void tre_free (regex_t *preg)
|
|
{
|
|
tre_tnfa_t *tnfa;
|
|
unsigned int i;
|
|
tre_tnfa_transition_t *trans;
|
|
|
|
tnfa = (void *)preg->TRE_REGEX_T_FIELD;
|
|
if (!tnfa)
|
|
return;
|
|
|
|
for (i = 0; i < tnfa->num_transitions; i++)
|
|
if (tnfa->transitions[i].state)
|
|
{
|
|
if (tnfa->transitions[i].tags)
|
|
xfree(preg->gem,tnfa->transitions[i].tags);
|
|
if (tnfa->transitions[i].neg_classes)
|
|
xfree(preg->gem,tnfa->transitions[i].neg_classes);
|
|
if (tnfa->transitions[i].params)
|
|
xfree(preg->gem,tnfa->transitions[i].params);
|
|
}
|
|
if (tnfa->transitions)
|
|
xfree(preg->gem,tnfa->transitions);
|
|
|
|
if (tnfa->initial)
|
|
{
|
|
for (trans = tnfa->initial; trans->state; trans++)
|
|
{
|
|
if (trans->tags)
|
|
xfree(preg->gem,trans->tags);
|
|
if (trans->params)
|
|
xfree(preg->gem,trans->params);
|
|
}
|
|
xfree(preg->gem,tnfa->initial);
|
|
}
|
|
|
|
if (tnfa->submatch_data)
|
|
{
|
|
for (i = 0; i < tnfa->num_submatches; i++)
|
|
if (tnfa->submatch_data[i].parents)
|
|
xfree(preg->gem,tnfa->submatch_data[i].parents);
|
|
xfree(preg->gem,tnfa->submatch_data);
|
|
}
|
|
|
|
if (tnfa->tag_directions)
|
|
xfree(preg->gem,tnfa->tag_directions);
|
|
/* HAWK: deleted */
|
|
/*
|
|
if (tnfa->firstpos_chars)
|
|
xfree(preg->gem,tnfa->firstpos_chars);
|
|
*/
|
|
/* END HAWK */
|
|
if (tnfa->minimal_tags)
|
|
xfree(preg->gem,tnfa->minimal_tags);
|
|
xfree(preg->gem,tnfa);
|
|
}
|
|
|
|
/* EOF */
|