2310 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2310 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|     Copyright (c) 2006-2020 Chung, Hyung-Hwan. All rights reserved.
 | |
| 
 | |
|     Redistribution and use in source and binary forms, with or without
 | |
|     modification, are permitted provided that the following conditions
 | |
|     are met:
 | |
|     1. Redistributions of source code must retain the above copyright
 | |
|        notice, this list of conditions and the following disclaimer.
 | |
|     2. Redistributions in binary form must reproduce the above copyright
 | |
|        notice, this list of conditions and the following disclaimer in the
 | |
|        documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|     THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
 | |
|     IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | |
|     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 | |
|     IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | |
|     NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 | |
|     THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|   tre-compile.c - TRE regex compiler
 | |
| 
 | |
| This is the license, copyright notice, and disclaimer for TRE, a regex
 | |
| matching package (library and tools) with support for approximate
 | |
| matching.
 | |
| 
 | |
| Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>
 | |
| All rights reserved.
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions
 | |
| are met:
 | |
| 
 | |
|   1. Redistributions of source code must retain the above copyright
 | |
|      notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|   2. Redistributions in binary form must reproduce the above copyright
 | |
|      notice, this list of conditions and the following disclaimer in the
 | |
|      documentation and/or other materials provided with the distribution.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
 | |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
 | |
| HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| #include <hawk-tre.h>
 | |
| #include "tre-stack.h"
 | |
| #include "tre-ast.h"
 | |
| #include "tre-parse.h"
 | |
| #include "tre-compile.h"
 | |
| 
 | |
| /*
 | |
|   Algorithms to setup tags so that submatch addressing can be done.
 | |
| */
 | |
| /* Inserts a catenation node to the root of the tree given in `node'.
 | |
|    As the left child a new tag with number `tag_id' to `node' is added,
 | |
|    and the right child is the old root. */
 | |
| static reg_errcode_t
 | |
| tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
 | |
| {
 | |
| 	tre_catenation_t *c;
 | |
| 
 | |
| 	DPRINT(("add_tag_left: tag %d\n", tag_id));
 | |
| 
 | |
| 	c = tre_mem_alloc(mem, sizeof(*c));
 | |
| 	if (c == NULL) return REG_ESPACE;
 | |
| 	c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
 | |
| 	if (c->left == NULL) return REG_ESPACE;
 | |
| 	c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
 | |
| 	if (c->right == NULL) return REG_ESPACE;
 | |
| 
 | |
| 	c->right->obj = node->obj;
 | |
| 	c->right->type = node->type;
 | |
| 	c->right->nullable = -1;
 | |
| 	c->right->submatch_id = -1;
 | |
| 	c->right->firstpos = NULL;
 | |
| 	c->right->lastpos = NULL;
 | |
| 	c->right->num_tags = 0;
 | |
| 	node->obj = c;
 | |
| 	node->type = CATENATION;
 | |
| 	return REG_OK;
 | |
| }
 | |
| 
 | |
| /* Inserts a catenation node to the root of the tree given in `node'.
 | |
|    As the right child a new tag with number `tag_id' to `node' is added,
 | |
|    and the left child is the old root. */
 | |
| static reg_errcode_t
 | |
| tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
 | |
| {
 | |
| 	tre_catenation_t *c;
 | |
| 
 | |
| 	DPRINT(("tre_add_tag_right: tag %d\n", tag_id));
 | |
| 
 | |
| 	c = tre_mem_alloc(mem, sizeof(*c));
 | |
| 	if (c == NULL)
 | |
| 		return REG_ESPACE;
 | |
| 	c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
 | |
| 	if (c->right == NULL)
 | |
| 		return REG_ESPACE;
 | |
| 	c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
 | |
| 	if (c->left == NULL)
 | |
| 		return REG_ESPACE;
 | |
| 
 | |
| 	c->left->obj = node->obj;
 | |
| 	c->left->type = node->type;
 | |
| 	c->left->nullable = -1;
 | |
| 	c->left->submatch_id = -1;
 | |
| 	c->left->firstpos = NULL;
 | |
| 	c->left->lastpos = NULL;
 | |
| 	c->left->num_tags = 0;
 | |
| 	node->obj = c;
 | |
| 	node->type = CATENATION;
 | |
| 	return REG_OK;
 | |
| }
 | |
| 
 | |
| typedef enum
 | |
| {
 | |
| 	ADDTAGS_RECURSE,
 | |
| 	ADDTAGS_AFTER_ITERATION,
 | |
| 	ADDTAGS_AFTER_UNION_LEFT,
 | |
| 	ADDTAGS_AFTER_UNION_RIGHT,
 | |
| 	ADDTAGS_AFTER_CAT_LEFT,
 | |
| 	ADDTAGS_AFTER_CAT_RIGHT,
 | |
| 	ADDTAGS_SET_SUBMATCH_END
 | |
| } tre_addtags_symbol_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
| 	int tag;
 | |
| 	int next_tag;
 | |
| } tre_tag_states_t;
 | |
| 
 | |
| 
 | |
| /* Go through `regset' and set submatch data for submatches that are
 | |
|    using this tag. */
 | |
| static void
 | |
| tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; regset[i] >= 0; i++)
 | |
| 	{
 | |
| 		int id = regset[i] / 2;
 | |
| 		int start = !(regset[i] % 2);
 | |
| 		DPRINT(("  Using tag %d for %s offset of "
 | |
| 		        "submatch %d\n", tag,
 | |
| 		        start ? "start" : "end", id));
 | |
| 		if (start)
 | |
| 			tnfa->submatch_data[id].so_tag = tag;
 | |
| 		else
 | |
| 			tnfa->submatch_data[id].eo_tag = tag;
 | |
| 	}
 | |
| 	regset[0] = -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Adds tags to appropriate locations in the parse tree in `tree', so that
 | |
|    subexpressions marked for submatch addressing can be traced. */
 | |
| static reg_errcode_t
 | |
| tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
 | |
|              tre_tnfa_t *tnfa, int first_pass)
 | |
| {
 | |
| 	reg_errcode_t status = REG_OK;
 | |
| 	tre_addtags_symbol_t symbol;
 | |
| 	tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
 | |
| 	int bottom = tre_stack_num_objects(stack);
 | |
| 	/* True for first pass (counting number of needed tags) */
 | |
| 	/*int first_pass = (mem == NULL || tnfa == NULL);*/
 | |
| 	int *regset, *orig_regset;
 | |
| 	int num_tags = 0; /* Total number of tags. */
 | |
| 	int num_minimals = 0;	 /* Number of special minimal tags. */
 | |
| 	int tag = 0;	    /* The tag that is to be added next. */
 | |
| 	int next_tag = 1; /* Next tag to use after this one. */
 | |
| 	int *parents;	    /* Stack of submatches the current submatch is
 | |
| 		       contained in. */
 | |
| 	int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
 | |
| 	tre_tag_states_t *saved_states;
 | |
| 
 | |
| 	tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
 | |
| 	if (!first_pass)
 | |
| 	{
 | |
| 		tnfa->end_tag = 0;
 | |
| 		tnfa->minimal_tags[0] = -1;
 | |
| 	}
 | |
| 
 | |
| 	regset = xmalloc(mem->gem, sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
 | |
| 	if (regset == NULL)
 | |
| 		return REG_ESPACE;
 | |
| 	regset[0] = -1;
 | |
| 	orig_regset = regset;
 | |
| 
 | |
| 	parents = xmalloc(mem->gem, sizeof(*parents) * (tnfa->num_submatches + 1));
 | |
| 	if (parents == NULL)
 | |
| 	{
 | |
| 		xfree(mem->gem, regset);
 | |
| 		return REG_ESPACE;
 | |
| 	}
 | |
| 	parents[0] = -1;
 | |
| 
 | |
| 	saved_states = xmalloc(mem->gem, sizeof(*saved_states) * (tnfa->num_submatches + 1));
 | |
| 	if (saved_states == NULL)
 | |
| 	{
 | |
| 		xfree(mem->gem,regset);
 | |
| 		xfree(mem->gem,parents);
 | |
| 		return REG_ESPACE;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		unsigned int i;
 | |
| 		for (i = 0; i <= tnfa->num_submatches; i++)
 | |
| 			saved_states[i].tag = -1;
 | |
| 	}
 | |
| 
 | |
| 	STACK_PUSH(stack, voidptr, node);
 | |
| 	STACK_PUSH(stack, int, ADDTAGS_RECURSE);
 | |
| 
 | |
| 	while (tre_stack_num_objects(stack) > bottom)
 | |
| 	{
 | |
| 		if (status != REG_OK)
 | |
| 			break;
 | |
| 
 | |
| 		symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
 | |
| 		switch (symbol)
 | |
| 		{
 | |
| 
 | |
| 			case ADDTAGS_SET_SUBMATCH_END:
 | |
| 			{
 | |
| 				int id = tre_stack_pop_int(stack);
 | |
| 				int i;
 | |
| 
 | |
| 				/* Add end of this submatch to regset. */
 | |
| 				for (i = 0; regset[i] >= 0; i++);
 | |
| 				regset[i] = id * 2 + 1;
 | |
| 				regset[i + 1] = -1;
 | |
| 
 | |
| 				/* Pop this submatch from the parents stack. */
 | |
| 				for (i = 0; parents[i] >= 0; i++);
 | |
| 				parents[i - 1] = -1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			case ADDTAGS_RECURSE:
 | |
| 				node = tre_stack_pop_voidptr(stack);
 | |
| 
 | |
| 				if (node->submatch_id >= 0)
 | |
| 				{
 | |
| 					int id = node->submatch_id;
 | |
| 					int i;
 | |
| 
 | |
| 
 | |
| 					/* Add start of this submatch to regset. */
 | |
| 					for (i = 0; regset[i] >= 0; i++);
 | |
| 					regset[i] = id * 2;
 | |
| 					regset[i + 1] = -1;
 | |
| 
 | |
| 					if (!first_pass)
 | |
| 					{
 | |
| 						for (i = 0; parents[i] >= 0; i++);
 | |
| 						tnfa->submatch_data[id].parents = NULL;
 | |
| 						if (i > 0)
 | |
| 						{
 | |
| 							int *p = xmalloc(mem->gem, sizeof(*p) * (i + 1));
 | |
| 							if (p == NULL)
 | |
| 							{
 | |
| 								status = REG_ESPACE;
 | |
| 								break;
 | |
| 							}
 | |
| 							assert(tnfa->submatch_data[id].parents == NULL);
 | |
| 							tnfa->submatch_data[id].parents = p;
 | |
| 							for (i = 0; parents[i] >= 0; i++)
 | |
| 								p[i] = parents[i];
 | |
| 							p[i] = -1;
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					/* Add end of this submatch to regset after processing this
 | |
| 							 node. */
 | |
| 					STACK_PUSHX(stack, int, node->submatch_id);
 | |
| 					STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
 | |
| 				}
 | |
| 
 | |
| 				switch (node->type)
 | |
| 				{
 | |
| 					case LITERAL:
 | |
| 					{
 | |
| 						tre_literal_t *lit = node->obj;
 | |
| 
 | |
| 						if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
 | |
| 						{
 | |
| 							int i;
 | |
| 							DPRINT(("Literal %d-%d\n",
 | |
| 							        (int)lit->code_min, (int)lit->code_max));
 | |
| 							if (regset[0] >= 0)
 | |
| 							{
 | |
| 								/* Regset is not empty, so add a tag before the
 | |
| 								   literal or backref. */
 | |
| 								if (!first_pass)
 | |
| 								{
 | |
| 									status = tre_add_tag_left(mem, node, tag);
 | |
| 									tnfa->tag_directions[tag] = direction;
 | |
| 									if (minimal_tag >= 0)
 | |
| 									{
 | |
| 										DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
 | |
| 										for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
 | |
| 										tnfa->minimal_tags[i] = tag;
 | |
| 										tnfa->minimal_tags[i + 1] = minimal_tag;
 | |
| 										tnfa->minimal_tags[i + 2] = -1;
 | |
| 										minimal_tag = -1;
 | |
| 										num_minimals++;
 | |
| 									}
 | |
| 									tre_purge_regset(regset, tnfa, tag);
 | |
| 								}
 | |
| 								else
 | |
| 								{
 | |
| 									DPRINT(("  num_tags = 1\n"));
 | |
| 									node->num_tags = 1;
 | |
| 								}
 | |
| 
 | |
| 								DPRINT(("  num_tags++\n"));
 | |
| 								regset[0] = -1;
 | |
| 								tag = next_tag;
 | |
| 								num_tags++;
 | |
| 								next_tag++;
 | |
| 							}
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							assert(!IS_TAG(lit));
 | |
| 						}
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 
 | |
| 					case CATENATION:
 | |
| 					{
 | |
| 						tre_catenation_t *cat = node->obj;
 | |
| 						tre_ast_node_t *left = cat->left;
 | |
| 						tre_ast_node_t *right = cat->right;
 | |
| 						int reserved_tag = -1;
 | |
| 						DPRINT(("Catenation, next_tag = %d\n", next_tag));
 | |
| 
 | |
| 
 | |
| 						/* After processing right child. */
 | |
| 						STACK_PUSHX(stack, voidptr, node);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
 | |
| 
 | |
| 						/* Process right child. */
 | |
| 						STACK_PUSHX(stack, voidptr, right);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
 | |
| 
 | |
| 						/* After processing left child. */
 | |
| 						STACK_PUSHX(stack, int, next_tag + left->num_tags);
 | |
| 						DPRINT(("  Pushing %d for after left\n",
 | |
| 						        next_tag + left->num_tags));
 | |
| 						if (left->num_tags > 0 && right->num_tags > 0)
 | |
| 						{
 | |
| 							/* Reserve the next tag to the right child. */
 | |
| 							DPRINT(("  Reserving next_tag %d to right child\n",
 | |
| 							        next_tag));
 | |
| 							reserved_tag = next_tag;
 | |
| 							next_tag++;
 | |
| 						}
 | |
| 						STACK_PUSHX(stack, int, reserved_tag);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
 | |
| 
 | |
| 						/* Process left child. */
 | |
| 						STACK_PUSHX(stack, voidptr, left);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 
 | |
| 					case ITERATION:
 | |
| 					{
 | |
| 						tre_iteration_t *iter = node->obj;
 | |
| 						DPRINT(("Iteration\n"));
 | |
| 
 | |
| 						if (first_pass)
 | |
| 						{
 | |
| 							STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							STACK_PUSHX(stack, int, tag);
 | |
| 							STACK_PUSHX(stack, int, iter->minimal);
 | |
| 						}
 | |
| 						STACK_PUSHX(stack, voidptr, node);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
 | |
| 
 | |
| 						STACK_PUSHX(stack, voidptr, iter->arg);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
 | |
| 
 | |
| 						/* Regset is not empty, so add a tag here. */
 | |
| 						if (regset[0] >= 0 || iter->minimal)
 | |
| 						{
 | |
| 							if (!first_pass)
 | |
| 							{
 | |
| 								int i;
 | |
| 								status = tre_add_tag_left(mem, node, tag);
 | |
| 								if (iter->minimal)
 | |
| 									tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
 | |
| 								else
 | |
| 									tnfa->tag_directions[tag] = direction;
 | |
| 								if (minimal_tag >= 0)
 | |
| 								{
 | |
| 									DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
 | |
| 									for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
 | |
| 									tnfa->minimal_tags[i] = tag;
 | |
| 									tnfa->minimal_tags[i + 1] = minimal_tag;
 | |
| 									tnfa->minimal_tags[i + 2] = -1;
 | |
| 									minimal_tag = -1;
 | |
| 									num_minimals++;
 | |
| 								}
 | |
| 								tre_purge_regset(regset, tnfa, tag);
 | |
| 							}
 | |
| 
 | |
| 							DPRINT(("  num_tags++\n"));
 | |
| 							regset[0] = -1;
 | |
| 							tag = next_tag;
 | |
| 							num_tags++;
 | |
| 							next_tag++;
 | |
| 						}
 | |
| 						direction = TRE_TAG_MINIMIZE;
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 					case UNION:
 | |
| 					{
 | |
| 						tre_union_t *uni = node->obj;
 | |
| 						tre_ast_node_t *left = uni->left;
 | |
| 						tre_ast_node_t *right = uni->right;
 | |
| 						int left_tag;
 | |
| 						int right_tag;
 | |
| 
 | |
| 						if (regset[0] >= 0)
 | |
| 						{
 | |
| 							left_tag = next_tag;
 | |
| 							right_tag = next_tag + 1;
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							left_tag = tag;
 | |
| 							right_tag = next_tag;
 | |
| 						}
 | |
| 
 | |
| 						DPRINT(("Union\n"));
 | |
| 
 | |
| 						/* After processing right child. */
 | |
| 						STACK_PUSHX(stack, int, right_tag);
 | |
| 						STACK_PUSHX(stack, int, left_tag);
 | |
| 						STACK_PUSHX(stack, voidptr, regset);
 | |
| 						STACK_PUSHX(stack, int, regset[0] >= 0);
 | |
| 						STACK_PUSHX(stack, voidptr, node);
 | |
| 						STACK_PUSHX(stack, voidptr, right);
 | |
| 						STACK_PUSHX(stack, voidptr, left);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
 | |
| 
 | |
| 						/* Process right child. */
 | |
| 						STACK_PUSHX(stack, voidptr, right);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
 | |
| 
 | |
| 						/* After processing left child. */
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
 | |
| 
 | |
| 						/* Process left child. */
 | |
| 						STACK_PUSHX(stack, voidptr, left);
 | |
| 						STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
 | |
| 
 | |
| 						/* Regset is not empty, so add a tag here. */
 | |
| 						if (regset[0] >= 0)
 | |
| 						{
 | |
| 							if (!first_pass)
 | |
| 							{
 | |
| 								int i;
 | |
| 								status = tre_add_tag_left(mem, node, tag);
 | |
| 								tnfa->tag_directions[tag] = direction;
 | |
| 								if (minimal_tag >= 0)
 | |
| 								{
 | |
| 									DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
 | |
| 									for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
 | |
| 									tnfa->minimal_tags[i] = tag;
 | |
| 									tnfa->minimal_tags[i + 1] = minimal_tag;
 | |
| 									tnfa->minimal_tags[i + 2] = -1;
 | |
| 									minimal_tag = -1;
 | |
| 									num_minimals++;
 | |
| 								}
 | |
| 								tre_purge_regset(regset, tnfa, tag);
 | |
| 							}
 | |
| 
 | |
| 							DPRINT(("  num_tags++\n"));
 | |
| 							regset[0] = -1;
 | |
| 							tag = next_tag;
 | |
| 							num_tags++;
 | |
| 							next_tag++;
 | |
| 						}
 | |
| 
 | |
| 						if (node->num_submatches > 0)
 | |
| 						{
 | |
| 							/* The next two tags are reserved for markers. */
 | |
| 							next_tag++;
 | |
| 							tag = next_tag;
 | |
| 							next_tag++;
 | |
| 						}
 | |
| 
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (node->submatch_id >= 0)
 | |
| 				{
 | |
| 					int i;
 | |
| 					/* Push this submatch on the parents stack. */
 | |
| 					for (i = 0; parents[i] >= 0; i++);
 | |
| 					parents[i] = node->submatch_id;
 | |
| 					parents[i + 1] = -1;
 | |
| 				}
 | |
| 
 | |
| 				break; /* end case: ADDTAGS_RECURSE */
 | |
| 
 | |
| 			case ADDTAGS_AFTER_ITERATION:
 | |
| 			{
 | |
| 				int minimal = 0;
 | |
| 				int enter_tag;
 | |
| 				node = tre_stack_pop_voidptr(stack);
 | |
| 				if (first_pass)
 | |
| 				{
 | |
| 					node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags
 | |
| 					                 + tre_stack_pop_int(stack);
 | |
| 					minimal_tag = -1;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					minimal = tre_stack_pop_int(stack);
 | |
| 					enter_tag = tre_stack_pop_int(stack);
 | |
| 					if (minimal)
 | |
| 						minimal_tag = enter_tag;
 | |
| 				}
 | |
| 
 | |
| 				DPRINT(("After iteration\n"));
 | |
| 				if (!first_pass)
 | |
| 				{
 | |
| 					DPRINT(("  Setting direction to %s\n",
 | |
| 					        minimal ? "minimize" : "maximize"));
 | |
| 					if (minimal)
 | |
| 						direction = TRE_TAG_MINIMIZE;
 | |
| 					else
 | |
| 						direction = TRE_TAG_MAXIMIZE;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			case ADDTAGS_AFTER_CAT_LEFT:
 | |
| 			{
 | |
| 				int new_tag = tre_stack_pop_int(stack);
 | |
| 				next_tag = tre_stack_pop_int(stack);
 | |
| 				DPRINT(("After cat left, tag = %d, next_tag = %d\n",
 | |
| 				        tag, next_tag));
 | |
| 				if (new_tag >= 0)
 | |
| 				{
 | |
| 					DPRINT(("  Setting tag to %d\n", new_tag));
 | |
| 					tag = new_tag;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			case ADDTAGS_AFTER_CAT_RIGHT:
 | |
| 				DPRINT(("After cat right\n"));
 | |
| 				node = tre_stack_pop_voidptr(stack);
 | |
| 				if (first_pass)
 | |
| 					node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags
 | |
| 					                 + ((tre_catenation_t *)node->obj)->right->num_tags;
 | |
| 				break;
 | |
| 
 | |
| 			case ADDTAGS_AFTER_UNION_LEFT:
 | |
| 				DPRINT(("After union left\n"));
 | |
| 				/* Lift the bottom of the `regset' array so that when processing
 | |
| 				   the right operand the items currently in the array are
 | |
| 				   invisible.	 The original bottom was saved at ADDTAGS_UNION and
 | |
| 				   will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
 | |
| 				while (*regset >= 0)
 | |
| 					regset++;
 | |
| 				break;
 | |
| 
 | |
| 			case ADDTAGS_AFTER_UNION_RIGHT:
 | |
| 			{
 | |
| 				int added_tags, tag_left, tag_right;
 | |
| 				tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
 | |
| 				tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
 | |
| 				DPRINT(("After union right\n"));
 | |
| 				node = tre_stack_pop_voidptr(stack);
 | |
| 				added_tags = tre_stack_pop_int(stack);
 | |
| 				if (first_pass)
 | |
| 				{
 | |
| 					node->num_tags = ((tre_union_t *)node->obj)->left->num_tags
 | |
| 					                 + ((tre_union_t *)node->obj)->right->num_tags + added_tags
 | |
| 					                 + ((node->num_submatches > 0) ? 2 : 0);
 | |
| 				}
 | |
| 				regset = tre_stack_pop_voidptr(stack);
 | |
| 				tag_left = tre_stack_pop_int(stack);
 | |
| 				tag_right = tre_stack_pop_int(stack);
 | |
| 
 | |
| 				/* Add tags after both children, the left child gets a smaller
 | |
| 				   tag than the right child.  This guarantees that we prefer
 | |
| 				   the left child over the right child. */
 | |
| 				/* XXX - This is not always necessary (if the children have
 | |
| 				   tags which must be seen for every match of that child). */
 | |
| 				/* XXX - Check if this is the only place where tre_add_tag_right
 | |
| 				   is used.	 If so, use tre_add_tag_left (putting the tag before
 | |
| 				   the child as opposed after the child) and throw away
 | |
| 				   tre_add_tag_right. */
 | |
| 				if (node->num_submatches > 0)
 | |
| 				{
 | |
| 					if (!first_pass)
 | |
| 					{
 | |
| 						status = tre_add_tag_right(mem, left, tag_left);
 | |
| 						tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
 | |
| 						status = tre_add_tag_right(mem, right, tag_right);
 | |
| 						tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
 | |
| 					}
 | |
| 					DPRINT(("  num_tags += 2\n"));
 | |
| 					num_tags += 2;
 | |
| 				}
 | |
| 				direction = TRE_TAG_MAXIMIZE;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			default:
 | |
| 				assert(0);
 | |
| 				break;
 | |
| 
 | |
| 		} /* end switch(symbol) */
 | |
| 	} /* end while(tre_stack_num_objects(stack) > bottom) */
 | |
| 
 | |
| 	if (!first_pass)
 | |
| 		tre_purge_regset(regset, tnfa, tag);
 | |
| 
 | |
| 	if (!first_pass && minimal_tag >= 0)
 | |
| 	{
 | |
| 		int i;
 | |
| 		DPRINT(("Minimal %d, %d\n", minimal_tag, tag));
 | |
| 		for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
 | |
| 		tnfa->minimal_tags[i] = tag;
 | |
| 		tnfa->minimal_tags[i + 1] = minimal_tag;
 | |
| 		tnfa->minimal_tags[i + 2] = -1;
 | |
| 		minimal_tag = -1;
 | |
| 		num_minimals++;
 | |
| 	}
 | |
| 
 | |
| 	DPRINT(("tre_add_tags: %s complete.  Number of tags %d.\n",
 | |
| 	        first_pass? "First pass" : "Second pass", num_tags));
 | |
| 
 | |
| 	assert(tree->num_tags == num_tags);
 | |
| 	tnfa->end_tag = num_tags;
 | |
| 	tnfa->num_tags = num_tags;
 | |
| 	tnfa->num_minimals = num_minimals;
 | |
| 	xfree(mem->gem,orig_regset);
 | |
| 	xfree(mem->gem,parents);
 | |
| 	xfree(mem->gem,saved_states);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|   AST to TNFA compilation routines.
 | |
| */
 | |
| 
 | |
| typedef enum
 | |
| {
 | |
| 	COPY_RECURSE,
 | |
| 	COPY_SET_RESULT_PTR
 | |
| } tre_copyast_symbol_t;
 | |
| 
 | |
| /* Flags for tre_copy_ast(). */
 | |
| #define COPY_REMOVE_TAGS	 1
 | |
| #define COPY_MAXIMIZE_FIRST_TAG	 2
 | |
| 
 | |
| static reg_errcode_t
 | |
| tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
 | |
|              int flags, int *pos_add, tre_tag_direction_t *tag_directions,
 | |
|              tre_ast_node_t **copy, int *max_pos)
 | |
| {
 | |
| 	reg_errcode_t status = REG_OK;
 | |
| 	int bottom = tre_stack_num_objects(stack);
 | |
| 	int num_copied = 0;
 | |
| 	int first_tag = 1;
 | |
| 	tre_ast_node_t **result = copy;
 | |
| 	tre_copyast_symbol_t symbol;
 | |
| 
 | |
| 	STACK_PUSH(stack, voidptr, ast);
 | |
| 	STACK_PUSH(stack, int, COPY_RECURSE);
 | |
| 
 | |
| 	while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
 | |
| 	{
 | |
| 		tre_ast_node_t *node;
 | |
| 		if (status != REG_OK)
 | |
| 			break;
 | |
| 
 | |
| 		symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
 | |
| 		switch (symbol)
 | |
| 		{
 | |
| 		case COPY_SET_RESULT_PTR:
 | |
| 			result = tre_stack_pop_voidptr(stack);
 | |
| 			break;
 | |
| 		case COPY_RECURSE:
 | |
| 			node = tre_stack_pop_voidptr(stack);
 | |
| 			switch (node->type)
 | |
| 			{
 | |
| 			case LITERAL:
 | |
| 			{
 | |
| 				tre_literal_t *lit = node->obj;
 | |
| 				int pos = lit->position;
 | |
| 				int min = lit->code_min;
 | |
| 				int max = lit->code_max;
 | |
| 				if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
 | |
| 				{
 | |
| 					/* XXX - e.g. [ab] has only one position but two
 | |
| 					   nodes, so we are creating holes in the state space
 | |
| 					   here.  Not fatal, just wastes memory. */
 | |
| 					pos += *pos_add;
 | |
| 					num_copied++;
 | |
| 				}
 | |
| 				else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS))
 | |
| 				{
 | |
| 					/* Change this tag to empty. */
 | |
| 					min = EMPTY;
 | |
| 					max = pos = -1;
 | |
| 				}
 | |
| 				else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG)
 | |
| 				         && first_tag)
 | |
| 				{
 | |
| 					/* Maximize the first tag. */
 | |
| 					tag_directions[max] = TRE_TAG_MAXIMIZE;
 | |
| 					first_tag = 0;
 | |
| 				}
 | |
| 				*result = tre_ast_new_literal(mem, min, max, pos);
 | |
| 				if (*result == NULL) status = REG_ESPACE;
 | |
| 
 | |
| 				/* HAWK */
 | |
| 				((tre_literal_t*)(*result)->obj)->u.class = lit->u.class;
 | |
| 				/* END HAWK */
 | |
| 				if (pos > *max_pos)
 | |
| 					*max_pos = pos;
 | |
| 				break;
 | |
| 			}
 | |
| 			case UNION:
 | |
| 			{
 | |
| 				tre_union_t *uni = node->obj;
 | |
| 				tre_union_t *tmp;
 | |
| 				*result = tre_ast_new_union(mem, uni->left, uni->right);
 | |
| 				if (*result == NULL)
 | |
| 				{
 | |
| 					status = REG_ESPACE;
 | |
| 					break;
 | |
| 				}
 | |
| 				tmp = (*result)->obj;
 | |
| 				result = &tmp->left;
 | |
| 				STACK_PUSHX(stack, voidptr, uni->right);
 | |
| 				STACK_PUSHX(stack, int, COPY_RECURSE);
 | |
| 				STACK_PUSHX(stack, voidptr, &tmp->right);
 | |
| 				STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
 | |
| 				STACK_PUSHX(stack, voidptr, uni->left);
 | |
| 				STACK_PUSHX(stack, int, COPY_RECURSE);
 | |
| 				break;
 | |
| 			}
 | |
| 			case CATENATION:
 | |
| 			{
 | |
| 				tre_catenation_t *cat = node->obj;
 | |
| 				tre_catenation_t *tmp;
 | |
| 				*result = tre_ast_new_catenation(mem, cat->left, cat->right);
 | |
| 				if (*result == NULL)
 | |
| 				{
 | |
| 					status = REG_ESPACE;
 | |
| 					break;
 | |
| 				}
 | |
| 				tmp = (*result)->obj;
 | |
| 				tmp->left = NULL;
 | |
| 				tmp->right = NULL;
 | |
| 				result = &tmp->left;
 | |
| 
 | |
| 				STACK_PUSHX(stack, voidptr, cat->right);
 | |
| 				STACK_PUSHX(stack, int, COPY_RECURSE);
 | |
| 				STACK_PUSHX(stack, voidptr, &tmp->right);
 | |
| 				STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
 | |
| 				STACK_PUSHX(stack, voidptr, cat->left);
 | |
| 				STACK_PUSHX(stack, int, COPY_RECURSE);
 | |
| 				break;
 | |
| 			}
 | |
| 			case ITERATION:
 | |
| 			{
 | |
| 				tre_iteration_t *iter = node->obj;
 | |
| 				STACK_PUSHX(stack, voidptr, iter->arg);
 | |
| 				STACK_PUSHX(stack, int, COPY_RECURSE);
 | |
| 				*result = tre_ast_new_iter(mem, iter->arg, iter->min,
 | |
| 				                           iter->max, iter->minimal);
 | |
| 				if (*result == NULL)
 | |
| 				{
 | |
| 					status = REG_ESPACE;
 | |
| 					break;
 | |
| 				}
 | |
| 				iter = (*result)->obj;
 | |
| 				result = &iter->arg;
 | |
| 				break;
 | |
| 			}
 | |
| 			default:
 | |
| 				assert(0);
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*pos_add += num_copied;
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| typedef enum
 | |
| {
 | |
| 	EXPAND_RECURSE,
 | |
| 	EXPAND_AFTER_ITER
 | |
| } tre_expand_ast_symbol_t;
 | |
| 
 | |
| /* Expands each iteration node that has a finite nonzero minimum or maximum
 | |
|    iteration count to a catenated sequence of copies of the node. */
 | |
| static reg_errcode_t
 | |
| tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
 | |
|                int *position, tre_tag_direction_t *tag_directions,
 | |
|                int *max_depth)
 | |
| {
 | |
| 	reg_errcode_t status = REG_OK;
 | |
| 	int bottom = tre_stack_num_objects(stack);
 | |
| 	int pos_add = 0;
 | |
| 	int pos_add_total = 0;
 | |
| 	int max_pos = 0;
 | |
| 	/* Current approximate matching parameters. */
 | |
| 	int params[TRE_PARAM_LAST];
 | |
| 	/* Approximate parameter nesting level. */
 | |
| 	int params_depth = 0;
 | |
| 	int iter_depth = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 		params[i] = TRE_PARAM_DEFAULT;
 | |
| 
 | |
| 	STACK_PUSHR(stack, voidptr, ast);
 | |
| 	STACK_PUSHR(stack, int, EXPAND_RECURSE);
 | |
| 	while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
 | |
| 	{
 | |
| 		tre_ast_node_t *node;
 | |
| 		tre_expand_ast_symbol_t symbol;
 | |
| 
 | |
| 		if (status != REG_OK)
 | |
| 			break;
 | |
| 
 | |
| 		DPRINT(("pos_add %d\n", pos_add));
 | |
| 
 | |
| 		symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
 | |
| 		node = tre_stack_pop_voidptr(stack);
 | |
| 		switch (symbol)
 | |
| 		{
 | |
| 		case EXPAND_RECURSE:
 | |
| 			switch (node->type)
 | |
| 			{
 | |
| 			case LITERAL:
 | |
| 			{
 | |
| 				tre_literal_t *lit= node->obj;
 | |
| 				if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
 | |
| 				{
 | |
| 					lit->position += pos_add;
 | |
| 					if (lit->position > max_pos)
 | |
| 						max_pos = lit->position;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			case UNION:
 | |
| 			{
 | |
| 				tre_union_t *uni = node->obj;
 | |
| 				STACK_PUSHX(stack, voidptr, uni->right);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_RECURSE);
 | |
| 				STACK_PUSHX(stack, voidptr, uni->left);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_RECURSE);
 | |
| 				break;
 | |
| 			}
 | |
| 			case CATENATION:
 | |
| 			{
 | |
| 				tre_catenation_t *cat = node->obj;
 | |
| 				STACK_PUSHX(stack, voidptr, cat->right);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_RECURSE);
 | |
| 				STACK_PUSHX(stack, voidptr, cat->left);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_RECURSE);
 | |
| 				break;
 | |
| 			}
 | |
| 			case ITERATION:
 | |
| 			{
 | |
| 				tre_iteration_t *iter = node->obj;
 | |
| 				STACK_PUSHX(stack, int, pos_add);
 | |
| 				STACK_PUSHX(stack, voidptr, node);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
 | |
| 				STACK_PUSHX(stack, voidptr, iter->arg);
 | |
| 				STACK_PUSHX(stack, int, EXPAND_RECURSE);
 | |
| 				/* If we are going to expand this node at EXPAND_AFTER_ITER
 | |
| 				   then don't increase the `pos' fields of the nodes now, it
 | |
| 				   will get done when expanding. */
 | |
| 				if (iter->min > 1 || iter->max > 1)
 | |
| 					pos_add = 0;
 | |
| 				iter_depth++;
 | |
| 				DPRINT(("iter\n"));
 | |
| 				break;
 | |
| 			}
 | |
| 			default:
 | |
| 				assert(0);
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		case EXPAND_AFTER_ITER:
 | |
| 		{
 | |
| 			tre_iteration_t *iter = node->obj;
 | |
| 			int pos_add_last;
 | |
| 			pos_add = tre_stack_pop_int(stack);
 | |
| 			pos_add_last = pos_add;
 | |
| 			if (iter->min > 1 || iter->max > 1)
 | |
| 			{
 | |
| 				tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
 | |
| 				int j;
 | |
| 				int pos_add_save = pos_add;
 | |
| 
 | |
| 				/* Create a catenated sequence of copies of the node. */
 | |
| 				for (j = 0; j < iter->min; j++)
 | |
| 				{
 | |
| 					tre_ast_node_t *copy;
 | |
| 					/* Remove tags from all but the last copy. */
 | |
| 					int flags = ((j + 1 < iter->min)
 | |
| 					             ? COPY_REMOVE_TAGS
 | |
| 					             : COPY_MAXIMIZE_FIRST_TAG);
 | |
| 					DPRINT(("  pos_add %d\n", pos_add));
 | |
| 					pos_add_save = pos_add;
 | |
| 					status = tre_copy_ast(mem, stack, iter->arg, flags,
 | |
| 					                      &pos_add, tag_directions, ©,
 | |
| 					                      &max_pos);
 | |
| 					if (status != REG_OK)
 | |
| 						return status;
 | |
| 					if (seq1 != NULL)
 | |
| 						seq1 = tre_ast_new_catenation(mem, seq1, copy);
 | |
| 					else
 | |
| 						seq1 = copy;
 | |
| 					if (seq1 == NULL)
 | |
| 						return REG_ESPACE;
 | |
| 				}
 | |
| 
 | |
| 				if (iter->max == -1)
 | |
| 				{
 | |
| 					/* No upper limit. */
 | |
| 					pos_add_save = pos_add;
 | |
| 					status = tre_copy_ast(mem, stack, iter->arg, 0,
 | |
| 					                      &pos_add, NULL, &seq2, &max_pos);
 | |
| 					if (status != REG_OK)
 | |
| 						return status;
 | |
| 					seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
 | |
| 					if (seq2 == NULL)
 | |
| 						return REG_ESPACE;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					for (j = iter->min; j < iter->max; j++)
 | |
| 					{
 | |
| 						tre_ast_node_t *tmp, *copy;
 | |
| 						pos_add_save = pos_add;
 | |
| 						status = tre_copy_ast(mem, stack, iter->arg, 0,
 | |
| 						                      &pos_add, NULL, ©, &max_pos);
 | |
| 						if (status != REG_OK)
 | |
| 							return status;
 | |
| 						if (seq2 != NULL)
 | |
| 							seq2 = tre_ast_new_catenation(mem, copy, seq2);
 | |
| 						else
 | |
| 							seq2 = copy;
 | |
| 						if (seq2 == NULL)
 | |
| 							return REG_ESPACE;
 | |
| 						tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
 | |
| 						if (tmp == NULL)
 | |
| 							return REG_ESPACE;
 | |
| 						seq2 = tre_ast_new_union(mem, tmp, seq2);
 | |
| 						if (seq2 == NULL)
 | |
| 							return REG_ESPACE;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				pos_add = pos_add_save;
 | |
| 				if (seq1 == NULL)
 | |
| 					seq1 = seq2;
 | |
| 				else if (seq2 != NULL)
 | |
| 					seq1 = tre_ast_new_catenation(mem, seq1, seq2);
 | |
| 				if (seq1 == NULL)
 | |
| 					return REG_ESPACE;
 | |
| 				node->obj = seq1->obj;
 | |
| 				node->type = seq1->type;
 | |
| 			}
 | |
| 
 | |
| 			iter_depth--;
 | |
| 			pos_add_total += pos_add - pos_add_last;
 | |
| 			if (iter_depth == 0)
 | |
| 				pos_add = pos_add_total;
 | |
| 
 | |
| 			/* If approximate parameters are specified, surround the result
 | |
| 			   with two parameter setting nodes.  The one on the left sets
 | |
| 			   the specified parameters, and the one on the right restores
 | |
| 			   the old parameters. */
 | |
| 			if (iter->params)
 | |
| 			{
 | |
| 				tre_ast_node_t *tmp_l, *tmp_r, *tmp_node, *node_copy;
 | |
| 				int *old_params;
 | |
| 
 | |
| 				tmp_l = tre_ast_new_literal(mem, PARAMETER, 0, -1);
 | |
| 				if (!tmp_l)
 | |
| 					return REG_ESPACE;
 | |
| 				((tre_literal_t *)tmp_l->obj)->u.params = iter->params;
 | |
| 				iter->params[TRE_PARAM_DEPTH] = params_depth + 1;
 | |
| 				tmp_r = tre_ast_new_literal(mem, PARAMETER, 0, -1);
 | |
| 				if (!tmp_r)
 | |
| 					return REG_ESPACE;
 | |
| 				old_params = tre_mem_alloc(mem, sizeof(*old_params)
 | |
| 				                           * TRE_PARAM_LAST);
 | |
| 				if (!old_params)
 | |
| 					return REG_ESPACE;
 | |
| 				for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 					old_params[i] = params[i];
 | |
| 				((tre_literal_t *)tmp_r->obj)->u.params = old_params;
 | |
| 				old_params[TRE_PARAM_DEPTH] = params_depth;
 | |
| 				/* XXX - this is the only place where ast_new_node is
 | |
| 				   needed -- should be moved inside AST module. */
 | |
| 				node_copy = tre_ast_new_node(mem, ITERATION,
 | |
| 				                             sizeof(tre_iteration_t));
 | |
| 				if (!node_copy)
 | |
| 					return REG_ESPACE;
 | |
| 				node_copy->obj = node->obj;
 | |
| 				tmp_node = tre_ast_new_catenation(mem, tmp_l, node_copy);
 | |
| 				if (!tmp_node)
 | |
| 					return REG_ESPACE;
 | |
| 				tmp_node = tre_ast_new_catenation(mem, tmp_node, tmp_r);
 | |
| 				if (!tmp_node)
 | |
| 					return REG_ESPACE;
 | |
| 				/* Replace the contents of `node' with `tmp_node'. */
 | |
| 				HAWK_MEMCPY (node, tmp_node, sizeof(*node));
 | |
| 				node->obj = tmp_node->obj;
 | |
| 				node->type = tmp_node->type;
 | |
| 				params_depth++;
 | |
| 				if (params_depth > *max_depth)
 | |
| 					*max_depth = params_depth;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			assert(0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*position += pos_add_total;
 | |
| 
 | |
| 	/* `max_pos' should never be larger than `*position' if the above
 | |
| 	   code works, but just an extra safeguard let's make sure
 | |
| 	   `*position' is set large enough so enough memory will be
 | |
| 	   allocated for the transition table. */
 | |
| 	if (max_pos > *position)
 | |
| 		*position = max_pos;
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 	DPRINT(("Expanded AST:\n"));
 | |
| 	tre_ast_print(ast);
 | |
| 	DPRINT(("*position %d, max_pos %d\n", *position, max_pos));
 | |
| #endif
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static tre_pos_and_tags_t *
 | |
| tre_set_empty(tre_mem_t mem)
 | |
| {
 | |
| 	tre_pos_and_tags_t *new_set;
 | |
| 
 | |
| 	new_set = tre_mem_calloc(mem, sizeof(*new_set));
 | |
| 	if (new_set == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	new_set[0].position = -1;
 | |
| 	new_set[0].code_min = -1;
 | |
| 	new_set[0].code_max = -1;
 | |
| 
 | |
| 	return new_set;
 | |
| }
 | |
| 
 | |
| static tre_pos_and_tags_t *
 | |
| tre_set_one(tre_mem_t mem, int position, int code_min, int code_max,
 | |
|             tre_ctype_t class, tre_ctype_t *neg_classes, int backref)
 | |
| {
 | |
| 	tre_pos_and_tags_t *new_set;
 | |
| 
 | |
| 	new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
 | |
| 	if (new_set == NULL) return NULL;
 | |
| 
 | |
| 	new_set[0].position = position;
 | |
| 	new_set[0].code_min = code_min;
 | |
| 	new_set[0].code_max = code_max;
 | |
| 	new_set[0].class = class;
 | |
| 	new_set[0].neg_classes = neg_classes;
 | |
| 	new_set[0].backref = backref;
 | |
| 	new_set[1].position = -1;
 | |
| 	new_set[1].code_min = -1;
 | |
| 	new_set[1].code_max = -1;
 | |
| 
 | |
| 	return new_set;
 | |
| }
 | |
| 
 | |
| static tre_pos_and_tags_t *
 | |
| tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2,
 | |
|               int *tags, int assertions, int *params)
 | |
| {
 | |
| 	int s1, s2, i, j;
 | |
| 	tre_pos_and_tags_t *new_set;
 | |
| 	int *new_tags;
 | |
| 	int num_tags;
 | |
| 
 | |
| 	for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++);
 | |
| 	for (s1 = 0; set1[s1].position >= 0; s1++);
 | |
| 	for (s2 = 0; set2[s2].position >= 0; s2++);
 | |
| 	new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
 | |
| 	if (!new_set) return NULL;
 | |
| 
 | |
| 	for (s1 = 0; set1[s1].position >= 0; s1++)
 | |
| 	{
 | |
| 		new_set[s1].position = set1[s1].position;
 | |
| 		new_set[s1].code_min = set1[s1].code_min;
 | |
| 		new_set[s1].code_max = set1[s1].code_max;
 | |
| 		new_set[s1].assertions = set1[s1].assertions | assertions;
 | |
| 		new_set[s1].class = set1[s1].class;
 | |
| 		new_set[s1].neg_classes = set1[s1].neg_classes;
 | |
| 		new_set[s1].backref = set1[s1].backref;
 | |
| 		if (set1[s1].tags == NULL && tags == NULL)
 | |
| 			new_set[s1].tags = NULL;
 | |
| 		else
 | |
| 		{
 | |
| 			for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++);
 | |
| 			new_tags = tre_mem_alloc(mem, (sizeof(*new_tags)
 | |
| 			                               * (i + num_tags + 1)));
 | |
| 			if (new_tags == NULL)
 | |
| 				return NULL;
 | |
| 			for (j = 0; j < i; j++)
 | |
| 				new_tags[j] = set1[s1].tags[j];
 | |
| 			for (i = 0; i < num_tags; i++)
 | |
| 				new_tags[j + i] = tags[i];
 | |
| 			new_tags[j + i] = -1;
 | |
| 			new_set[s1].tags = new_tags;
 | |
| 		}
 | |
| 		if (set1[s1].params)
 | |
| 			new_set[s1].params = set1[s1].params;
 | |
| 		if (params)
 | |
| 		{
 | |
| 			if (!new_set[s1].params)
 | |
| 				new_set[s1].params = params;
 | |
| 			else
 | |
| 			{
 | |
| 				new_set[s1].params = tre_mem_alloc(mem, sizeof(*params) *
 | |
| 				                                   TRE_PARAM_LAST);
 | |
| 				if (!new_set[s1].params)
 | |
| 					return NULL;
 | |
| 				for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 					if (params[i] != TRE_PARAM_UNSET)
 | |
| 						new_set[s1].params[i] = params[i];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (s2 = 0; set2[s2].position >= 0; s2++)
 | |
| 	{
 | |
| 		new_set[s1 + s2].position = set2[s2].position;
 | |
| 		new_set[s1 + s2].code_min = set2[s2].code_min;
 | |
| 		new_set[s1 + s2].code_max = set2[s2].code_max;
 | |
| 		/* XXX - why not | assertions here as well? */
 | |
| 		new_set[s1 + s2].assertions = set2[s2].assertions;
 | |
| 		new_set[s1 + s2].class = set2[s2].class;
 | |
| 		new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
 | |
| 		new_set[s1 + s2].backref = set2[s2].backref;
 | |
| 		if (set2[s2].tags == NULL)
 | |
| 			new_set[s1 + s2].tags = NULL;
 | |
| 		else
 | |
| 		{
 | |
| 			for (i = 0; set2[s2].tags[i] >= 0; i++);
 | |
| 			new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
 | |
| 			if (new_tags == NULL)
 | |
| 				return NULL;
 | |
| 			for (j = 0; j < i; j++)
 | |
| 				new_tags[j] = set2[s2].tags[j];
 | |
| 			new_tags[j] = -1;
 | |
| 			new_set[s1 + s2].tags = new_tags;
 | |
| 		}
 | |
| 		if (set2[s2].params)
 | |
| 			new_set[s1 + s2].params = set2[s2].params;
 | |
| 		if (params)
 | |
| 		{
 | |
| 			if (!new_set[s1 + s2].params)
 | |
| 				new_set[s1 + s2].params = params;
 | |
| 			else
 | |
| 			{
 | |
| 				new_set[s1 + s2].params = tre_mem_alloc(mem, sizeof(*params) *
 | |
| 				                                        TRE_PARAM_LAST);
 | |
| 				if (!new_set[s1 + s2].params)
 | |
| 					return NULL;
 | |
| 				for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 					if (params[i] != TRE_PARAM_UNSET)
 | |
| 						new_set[s1 + s2].params[i] = params[i];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	new_set[s1 + s2].position = -1;
 | |
| 	return new_set;
 | |
| }
 | |
| 
 | |
| /* Finds the empty path through `node' which is the one that should be
 | |
|    taken according to POSIX.2 rules, and adds the tags on that path to
 | |
|    `tags'.   `tags' may be NULL.  If `num_tags_seen' is not NULL, it is
 | |
|    set to the number of tags seen on the path. */
 | |
| static reg_errcode_t
 | |
| tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags,
 | |
|                 int *assertions, int *params, int *num_tags_seen,
 | |
|                 int *params_seen)
 | |
| {
 | |
| 	tre_literal_t *lit;
 | |
| 	tre_union_t *uni;
 | |
| 	tre_catenation_t *cat;
 | |
| 	tre_iteration_t *iter;
 | |
| 	int i;
 | |
| 	int bottom = tre_stack_num_objects(stack);
 | |
| 	reg_errcode_t status = REG_OK;
 | |
| 	if (num_tags_seen)
 | |
| 		*num_tags_seen = 0;
 | |
| 	if (params_seen)
 | |
| 		*params_seen = 0;
 | |
| 
 | |
| 	status = tre_stack_push_voidptr(stack, node);
 | |
| 
 | |
| 	/* Walk through the tree recursively. */
 | |
| 	while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
 | |
| 	{
 | |
| 		node = tre_stack_pop_voidptr(stack);
 | |
| 
 | |
| 		switch (node->type)
 | |
| 		{
 | |
| 		case LITERAL:
 | |
| 			lit = (tre_literal_t *)node->obj;
 | |
| 			switch (lit->code_min)
 | |
| 			{
 | |
| 			case TAG:
 | |
| 				if (lit->code_max >= 0)
 | |
| 				{
 | |
| 					if (tags != NULL)
 | |
| 					{
 | |
| 						/* Add the tag to `tags'. */
 | |
| 						for (i = 0; tags[i] >= 0; i++)
 | |
| 							if (tags[i] == lit->code_max)
 | |
| 								break;
 | |
| 						if (tags[i] < 0)
 | |
| 						{
 | |
| 							tags[i] = lit->code_max;
 | |
| 							tags[i + 1] = -1;
 | |
| 						}
 | |
| 					}
 | |
| 					if (num_tags_seen)
 | |
| 						(*num_tags_seen)++;
 | |
| 				}
 | |
| 				break;
 | |
| 			case ASSERTION:
 | |
| 				assert(lit->code_max >= 1
 | |
| 				       || lit->code_max <= ASSERT_LAST);
 | |
| 				if (assertions != NULL)
 | |
| 					*assertions |= lit->code_max;
 | |
| 				break;
 | |
| 			case PARAMETER:
 | |
| 				if (params != NULL)
 | |
| 					for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 						params[i] = lit->u.params[i];
 | |
| 				if (params_seen != NULL)
 | |
| 					*params_seen = 1;
 | |
| 				break;
 | |
| 			case EMPTY:
 | |
| 				break;
 | |
| 			default:
 | |
| 				assert(0);
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case UNION:
 | |
| 			/* Subexpressions starting earlier take priority over ones
 | |
| 			   starting later, so we prefer the left subexpression over the
 | |
| 			   right subexpression. */
 | |
| 			uni = (tre_union_t *)node->obj;
 | |
| 			if (uni->left->nullable)
 | |
| 				STACK_PUSHX(stack, voidptr, uni->left)
 | |
| 				else if (uni->right->nullable)
 | |
| 					STACK_PUSHX(stack, voidptr, uni->right)
 | |
| 					else
 | |
| 						assert(0);
 | |
| 			break;
 | |
| 
 | |
| 		case CATENATION:
 | |
| 			/* The path must go through both children. */
 | |
| 			cat = (tre_catenation_t *)node->obj;
 | |
| 			assert(cat->left->nullable);
 | |
| 			assert(cat->right->nullable);
 | |
| 			STACK_PUSHX(stack, voidptr, cat->left);
 | |
| 			STACK_PUSHX(stack, voidptr, cat->right);
 | |
| 			break;
 | |
| 
 | |
| 		case ITERATION:
 | |
| 			/* A match with an empty string is preferred over no match at
 | |
| 			   all, so we go through the argument if possible. */
 | |
| 			iter = (tre_iteration_t *)node->obj;
 | |
| 			if (iter->arg->nullable)
 | |
| 				STACK_PUSHX(stack, voidptr, iter->arg);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			assert(0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef enum
 | |
| {
 | |
| 	NFL_RECURSE,
 | |
| 	NFL_POST_UNION,
 | |
| 	NFL_POST_CATENATION,
 | |
| 	NFL_POST_ITERATION
 | |
| } tre_nfl_stack_symbol_t;
 | |
| 
 | |
| 
 | |
| /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
 | |
|    the nodes of the AST `tree'. */
 | |
| static reg_errcode_t
 | |
| tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree)
 | |
| {
 | |
| 	int bottom = tre_stack_num_objects(stack);
 | |
| 
 | |
| 	STACK_PUSHR(stack, voidptr, tree);
 | |
| 	STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 
 | |
| 	while (tre_stack_num_objects(stack) > bottom)
 | |
| 	{
 | |
| 		tre_nfl_stack_symbol_t symbol;
 | |
| 		tre_ast_node_t *node;
 | |
| 
 | |
| 		symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
 | |
| 		node = tre_stack_pop_voidptr(stack);
 | |
| 		switch (symbol)
 | |
| 		{
 | |
| 		case NFL_RECURSE:
 | |
| 			switch (node->type)
 | |
| 			{
 | |
| 			case LITERAL:
 | |
| 			{
 | |
| 				tre_literal_t *lit = (tre_literal_t *)node->obj;
 | |
| 				if (IS_BACKREF(lit))
 | |
| 				{
 | |
| 					/* Back references: nullable = false, firstpos = {i},
 | |
| 					   lastpos = {i}. */
 | |
| 					node->nullable = 0;
 | |
| 					node->firstpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
 | |
| 					if (!node->firstpos) return REG_ESPACE;
 | |
| 					node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, (int)lit->code_max);
 | |
| 					if (!node->lastpos) return REG_ESPACE;
 | |
| 				}
 | |
| 				else if (lit->code_min < 0)
 | |
| 				{
 | |
| 					/* Tags, empty strings, params, and zero width assertions:
 | |
| 					   nullable = true, firstpos = {}, and lastpos = {}. */
 | |
| 					node->nullable = 1;
 | |
| 					node->firstpos = tre_set_empty(mem);
 | |
| 					if (!node->firstpos)
 | |
| 						return REG_ESPACE;
 | |
| 					node->lastpos = tre_set_empty(mem);
 | |
| 					if (!node->lastpos)
 | |
| 						return REG_ESPACE;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					/* Literal at position i: nullable = false, firstpos = {i},
 | |
| 					   lastpos = {i}. */
 | |
| 					node->nullable = 0;
 | |
| 					node->firstpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, 0, NULL, -1);
 | |
| 					if (!node->firstpos) return REG_ESPACE;
 | |
| 					node->lastpos = tre_set_one(mem, lit->position, (int)lit->code_min, (int)lit->code_max, lit->u.class, lit->neg_classes, -1);
 | |
| 					if (!node->lastpos) return REG_ESPACE;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			case UNION:
 | |
| 				/* Compute the attributes for the two subtrees, and after that
 | |
| 						 for this node. */
 | |
| 				STACK_PUSHR(stack, voidptr, node);
 | |
| 				STACK_PUSHR(stack, int, NFL_POST_UNION);
 | |
| 				STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
 | |
| 				STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 				STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
 | |
| 				STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 				break;
 | |
| 
 | |
| 			case CATENATION:
 | |
| 				/* Compute the attributes for the two subtrees, and after that
 | |
| 						 for this node. */
 | |
| 				STACK_PUSHR(stack, voidptr, node);
 | |
| 				STACK_PUSHR(stack, int, NFL_POST_CATENATION);
 | |
| 				STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
 | |
| 				STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 				STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
 | |
| 				STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 				break;
 | |
| 
 | |
| 			case ITERATION:
 | |
| 				/* Compute the attributes for the subtree, and after that for
 | |
| 						 this node. */
 | |
| 				STACK_PUSHR(stack, voidptr, node);
 | |
| 				STACK_PUSHR(stack, int, NFL_POST_ITERATION);
 | |
| 				STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
 | |
| 				STACK_PUSHR(stack, int, NFL_RECURSE);
 | |
| 				break;
 | |
| 			}
 | |
| 			break; /* end case: NFL_RECURSE */
 | |
| 
 | |
| 		case NFL_POST_UNION:
 | |
| 		{
 | |
| 			tre_union_t *uni = (tre_union_t *)node->obj;
 | |
| 			node->nullable = uni->left->nullable || uni->right->nullable;
 | |
| 			node->firstpos = tre_set_union(mem, uni->left->firstpos,
 | |
| 			                               uni->right->firstpos, NULL, 0, NULL);
 | |
| 			if (!node->firstpos)
 | |
| 				return REG_ESPACE;
 | |
| 			node->lastpos = tre_set_union(mem, uni->left->lastpos,
 | |
| 			                              uni->right->lastpos, NULL, 0, NULL);
 | |
| 			if (!node->lastpos)
 | |
| 				return REG_ESPACE;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case NFL_POST_ITERATION:
 | |
| 		{
 | |
| 			tre_iteration_t *iter = (tre_iteration_t *)node->obj;
 | |
| 
 | |
| 			if (iter->min == 0 || iter->arg->nullable)
 | |
| 				node->nullable = 1;
 | |
| 			else
 | |
| 				node->nullable = 0;
 | |
| 			node->firstpos = iter->arg->firstpos;
 | |
| 			node->lastpos = iter->arg->lastpos;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case NFL_POST_CATENATION:
 | |
| 		{
 | |
| 			int num_tags, *tags, assertions, params_seen;
 | |
| 			int *params;
 | |
| 			reg_errcode_t status;
 | |
| 			tre_catenation_t *cat = node->obj;
 | |
| 			node->nullable = cat->left->nullable && cat->right->nullable;
 | |
| 
 | |
| 			/* Compute firstpos. */
 | |
| 			if (cat->left->nullable)
 | |
| 			{
 | |
| 				/* The left side matches the empty string.  Make a first pass
 | |
| 				   with tre_match_empty() to get the number of tags and
 | |
| 				   parameters. */
 | |
| 				status = tre_match_empty(stack, cat->left,
 | |
| 				                         NULL, NULL, NULL, &num_tags,
 | |
| 				                         ¶ms_seen);
 | |
| 				if (status != REG_OK)
 | |
| 					return status;
 | |
| 				/* Allocate arrays for the tags and parameters. */
 | |
| 				tags = xmalloc(mem->gem, sizeof(*tags) * (num_tags + 1));
 | |
| 				if (!tags)
 | |
| 					return REG_ESPACE;
 | |
| 				tags[0] = -1;
 | |
| 				assertions = 0;
 | |
| 				params = NULL;
 | |
| 				if (params_seen)
 | |
| 				{
 | |
| 					params = tre_mem_alloc(mem, sizeof(*params)
 | |
| 					                       * TRE_PARAM_LAST);
 | |
| 					if (!params)
 | |
| 					{
 | |
| 						xfree(mem->gem,tags);
 | |
| 						return REG_ESPACE;
 | |
| 					}
 | |
| 				}
 | |
| 				/* Second pass with tre_mach_empty() to get the list of
 | |
| 				   tags and parameters. */
 | |
| 				status = tre_match_empty(stack, cat->left, tags,
 | |
| 				                         &assertions, params, NULL, NULL);
 | |
| 				if (status != REG_OK)
 | |
| 				{
 | |
| 					xfree(mem->gem,tags);
 | |
| 					return status;
 | |
| 				}
 | |
| 				node->firstpos =
 | |
| 				    tre_set_union(mem, cat->right->firstpos, cat->left->firstpos,
 | |
| 				                  tags, assertions, params);
 | |
| 				xfree(mem->gem,tags);
 | |
| 				if (!node->firstpos)
 | |
| 					return REG_ESPACE;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				node->firstpos = cat->left->firstpos;
 | |
| 			}
 | |
| 
 | |
| 			/* Compute lastpos. */
 | |
| 			if (cat->right->nullable)
 | |
| 			{
 | |
| 				/* The right side matches the empty string.  Make a first pass
 | |
| 				   with tre_match_empty() to get the number of tags and
 | |
| 				   parameters. */
 | |
| 				status = tre_match_empty(stack, cat->right,
 | |
| 				                         NULL, NULL, NULL, &num_tags,
 | |
| 				                         ¶ms_seen);
 | |
| 				if (status != REG_OK)
 | |
| 					return status;
 | |
| 				/* Allocate arrays for the tags and parameters. */
 | |
| 				tags = xmalloc(mem->gem,sizeof(int) * (num_tags + 1));
 | |
| 				if (!tags)
 | |
| 					return REG_ESPACE;
 | |
| 				tags[0] = -1;
 | |
| 				assertions = 0;
 | |
| 				params = NULL;
 | |
| 				if (params_seen)
 | |
| 				{
 | |
| 					params = tre_mem_alloc(mem, sizeof(*params)
 | |
| 					                       * TRE_PARAM_LAST);
 | |
| 					if (!params)
 | |
| 					{
 | |
| 						xfree(mem->gem,tags);
 | |
| 						return REG_ESPACE;
 | |
| 					}
 | |
| 				}
 | |
| 				/* Second pass with tre_mach_empty() to get the list of
 | |
| 				   tags and parameters. */
 | |
| 				status = tre_match_empty(stack, cat->right, tags,
 | |
| 				                         &assertions, params, NULL, NULL);
 | |
| 				if (status != REG_OK)
 | |
| 				{
 | |
| 					xfree(mem->gem,tags);
 | |
| 					return status;
 | |
| 				}
 | |
| 				node->lastpos =
 | |
| 				    tre_set_union(mem, cat->left->lastpos, cat->right->lastpos,
 | |
| 				                  tags, assertions, params);
 | |
| 				xfree(mem->gem,tags);
 | |
| 				if (!node->lastpos)
 | |
| 					return REG_ESPACE;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				node->lastpos = cat->right->lastpos;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		default:
 | |
| 			assert(0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return REG_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Adds a transition from each position in `p1' to each position in `p2'. */
 | |
| static reg_errcode_t
 | |
| tre_make_trans(hawk_gem_t* gem, tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
 | |
|                tre_tnfa_transition_t *transitions,
 | |
|                int *counts, int *offs)
 | |
| {
 | |
| 	tre_pos_and_tags_t *orig_p2 = p2;
 | |
| 	tre_tnfa_transition_t *trans;
 | |
| 	int i, j, k, l, dup, prev_p2_pos;
 | |
| 
 | |
| 	if (transitions != NULL)
 | |
| 	{
 | |
| 		while (p1->position >= 0)
 | |
| 		{
 | |
| 			p2 = orig_p2;
 | |
| 			prev_p2_pos = -1;
 | |
| 			while (p2->position >= 0)
 | |
| 			{
 | |
| 				/* Optimization: if this position was already handled, skip it. */
 | |
| 				if (p2->position == prev_p2_pos)
 | |
| 				{
 | |
| 					p2++;
 | |
| 					continue;
 | |
| 				}
 | |
| 				prev_p2_pos = p2->position;
 | |
| 				/* Set `trans' to point to the next unused transition from
 | |
| 				   position `p1->position'. */
 | |
| 				trans = transitions + offs[p1->position];
 | |
| 				while (trans->state != NULL)
 | |
| 				{
 | |
| #if 0
 | |
| 					/* If we find a previous transition from `p1->position' to
 | |
| 					   `p2->position', it is overwritten.  This can happen only
 | |
| 					   if there are nested loops in the regexp, like in "((a)*)*".
 | |
| 					   In POSIX.2 repetition using the outer loop is always
 | |
| 					   preferred over using the inner loop.	 Therefore the
 | |
| 					   transition for the inner loop is useless and can be thrown
 | |
| 					   away. */
 | |
| 					/* XXX - The same position is used for all nodes in a bracket
 | |
| 					   expression, so this optimization cannot be used (it will
 | |
| 					   break bracket expressions) unless I figure out a way to
 | |
| 					   detect it here. */
 | |
| 					if (trans->state_id == p2->position)
 | |
| 					{
 | |
| 						DPRINT(("*"));
 | |
| 						break;
 | |
| 					}
 | |
| #endif
 | |
| 					trans++;
 | |
| 				}
 | |
| 
 | |
| 				if (trans->state == NULL)
 | |
| 					(trans + 1)->state = NULL;
 | |
| 				/* Use the character ranges, assertions, etc. from `p1' for
 | |
| 				   the transition from `p1' to `p2'. */
 | |
| 				trans->code_min = p1->code_min;
 | |
| 				trans->code_max = p1->code_max;
 | |
| 				trans->state = transitions + offs[p2->position];
 | |
| 				trans->state_id = p2->position;
 | |
| 				trans->assertions = p1->assertions | p2->assertions
 | |
| 				                    | (p1->class ? ASSERT_CHAR_CLASS : 0)
 | |
| 				                    | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
 | |
| 				if (p1->backref >= 0)
 | |
| 				{
 | |
| 					assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
 | |
| 					assert(p2->backref < 0);
 | |
| 					trans->u.backref = p1->backref;
 | |
| 					trans->assertions |= ASSERT_BACKREF;
 | |
| 				}
 | |
| 				else
 | |
| 					trans->u.class = p1->class;
 | |
| 				if (p1->neg_classes != NULL)
 | |
| 				{
 | |
| 					for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++);
 | |
| 					trans->neg_classes = xmalloc(gem,sizeof(*trans->neg_classes) * (i + 1));
 | |
| 					if (trans->neg_classes == NULL) return REG_ESPACE;
 | |
| 					for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
 | |
| 						trans->neg_classes[i] = p1->neg_classes[i];
 | |
| 					trans->neg_classes[i] = (tre_ctype_t)0;
 | |
| 				}
 | |
| 				else
 | |
| 					trans->neg_classes = NULL;
 | |
| 
 | |
| 				/* Find out how many tags this transition has. */
 | |
| 				i = 0;
 | |
| 				if (p1->tags != NULL)
 | |
| 					while(p1->tags[i] >= 0)
 | |
| 						i++;
 | |
| 				j = 0;
 | |
| 				if (p2->tags != NULL)
 | |
| 					while(p2->tags[j] >= 0)
 | |
| 						j++;
 | |
| 
 | |
| 				/* If we are overwriting a transition, free the old tag array. */
 | |
| 				if (trans->tags != NULL) xfree(gem,trans->tags);
 | |
| 				trans->tags = NULL;
 | |
| 
 | |
| 				/* If there were any tags, allocate an array and fill it. */
 | |
| 				if (i + j > 0)
 | |
| 				{
 | |
| 					trans->tags = xmalloc(gem,sizeof(*trans->tags) * (i + j + 1));
 | |
| 					if (!trans->tags)
 | |
| 						return REG_ESPACE;
 | |
| 					i = 0;
 | |
| 					if (p1->tags != NULL)
 | |
| 						while(p1->tags[i] >= 0)
 | |
| 						{
 | |
| 							trans->tags[i] = p1->tags[i];
 | |
| 							i++;
 | |
| 						}
 | |
| 					l = i;
 | |
| 					j = 0;
 | |
| 					if (p2->tags != NULL)
 | |
| 						while (p2->tags[j] >= 0)
 | |
| 						{
 | |
| 							/* Don't add duplicates. */
 | |
| 							dup = 0;
 | |
| 							for (k = 0; k < i; k++)
 | |
| 								if (trans->tags[k] == p2->tags[j])
 | |
| 								{
 | |
| 									dup = 1;
 | |
| 									break;
 | |
| 								}
 | |
| 							if (!dup)
 | |
| 								trans->tags[l++] = p2->tags[j];
 | |
| 							j++;
 | |
| 						}
 | |
| 					trans->tags[l] = -1;
 | |
| 				}
 | |
| 
 | |
| 				/* Set the parameter array.	 If both `p2' and `p1' have same
 | |
| 				   parameters, the values in `p2' override those in `p1'. */
 | |
| 				if (p1->params || p2->params)
 | |
| 				{
 | |
| 					if (!trans->params)
 | |
| 						trans->params = xmalloc(gem,sizeof(*trans->params) * TRE_PARAM_LAST);
 | |
| 					if (!trans->params)
 | |
| 						return REG_ESPACE;
 | |
| 					for (i = 0; i < TRE_PARAM_LAST; i++)
 | |
| 					{
 | |
| 						trans->params[i] = TRE_PARAM_UNSET;
 | |
| 						if (p1->params && p1->params[i] != TRE_PARAM_UNSET)
 | |
| 							trans->params[i] = p1->params[i];
 | |
| 						if (p2->params && p2->params[i] != TRE_PARAM_UNSET)
 | |
| 							trans->params[i] = p2->params[i];
 | |
| 					}
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					if (trans->params) xfree(gem,trans->params);
 | |
| 					trans->params = NULL;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 				{
 | |
| 					int *tags;
 | |
| 
 | |
| 					DPRINT(("	 %2d -> %2d on %3d", p1->position, p2->position,
 | |
| 					        (int)p1->code_min));
 | |
| 					if (p1->code_max != p1->code_min)
 | |
| 						DPRINT(("-%3d", (int)p1->code_max));
 | |
| 					tags = trans->tags;
 | |
| 					if (tags)
 | |
| 					{
 | |
| 						DPRINT((", tags ["));
 | |
| 						while (*tags >= 0)
 | |
| 						{
 | |
| 							DPRINT(("%d", *tags));
 | |
| 							tags++;
 | |
| 							if (*tags >= 0)
 | |
| 								DPRINT((","));
 | |
| 						}
 | |
| 						DPRINT(("]"));
 | |
| 					}
 | |
| 					if (trans->assertions)
 | |
| 						DPRINT((", assert %d", trans->assertions));
 | |
| 					if (trans->assertions & ASSERT_BACKREF)
 | |
| 						DPRINT((", backref %d", trans->u.backref));
 | |
| 					else if (trans->u.class)
 | |
| 						DPRINT((", class %ld", (long)trans->u.class));
 | |
| 					if (trans->neg_classes)
 | |
| 						DPRINT((", neg_classes %p", trans->neg_classes));
 | |
| 					if (trans->params)
 | |
| 					{
 | |
| 						DPRINT((", "));
 | |
| 						tre_print_params(trans->params);
 | |
| 					}
 | |
| 					DPRINT(("\n"));
 | |
| 				}
 | |
| #endif /* TRE_DEBUG */
 | |
| 				p2++;
 | |
| 			}
 | |
| 			p1++;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* Compute a maximum limit for the number of transitions leaving
 | |
| 		   from each state. */
 | |
| 		while (p1->position >= 0)
 | |
| 		{
 | |
| 			p2 = orig_p2;
 | |
| 			while (p2->position >= 0)
 | |
| 			{
 | |
| 				counts[p1->position]++;
 | |
| 				p2++;
 | |
| 			}
 | |
| 			p1++;
 | |
| 		}
 | |
| 	}
 | |
| 	return REG_OK;
 | |
| }
 | |
| 
 | |
| /* Converts the syntax tree to a TNFA.	All the transitions in the TNFA are
 | |
|    labelled with one character range (there are no transitions on empty
 | |
|    strings).  The TNFA takes O(n^2) space in the worst case, `n' is size of
 | |
|    the regexp. */
 | |
| /* HAWK */
 | |
| #if 0
 | |
| static reg_errcode_t
 | |
| tre_ast_to_tnfa(hawk_gem_t* gem, tre_ast_node_t *node, tre_tnfa_transition_t *transitions,
 | |
|                 int *counts, int *offs)
 | |
| {
 | |
| 	tre_union_t *uni;
 | |
| 	tre_catenation_t *cat;
 | |
| 	tre_iteration_t *iter;
 | |
| 	reg_errcode_t errcode = REG_OK;
 | |
| 
 | |
| 	/* XXX - recurse using a stack!. */
 | |
| 	switch (node->type)
 | |
| 	{
 | |
| 	case LITERAL:
 | |
| 		break;
 | |
| 	case UNION:
 | |
| 		uni = (tre_union_t *)node->obj;
 | |
| 		errcode = tre_ast_to_tnfa(gem, uni->left, transitions, counts, offs);
 | |
| 		if (errcode != REG_OK)
 | |
| 			return errcode;
 | |
| 		errcode = tre_ast_to_tnfa(gem, uni->right, transitions, counts, offs);
 | |
| 		break;
 | |
| 
 | |
| 	case CATENATION:
 | |
| 		cat = (tre_catenation_t *)node->obj;
 | |
| 		/* Add a transition from each position in cat->left->lastpos
 | |
| 			 to each position in cat->right->firstpos. */
 | |
| 		errcode = tre_make_trans(gem, cat->left->lastpos, cat->right->firstpos,
 | |
| 		                         transitions, counts, offs);
 | |
| 		if (errcode != REG_OK)
 | |
| 			return errcode;
 | |
| 		errcode = tre_ast_to_tnfa(gem, cat->left, transitions, counts, offs);
 | |
| 		if (errcode != REG_OK)
 | |
| 			return errcode;
 | |
| 		errcode = tre_ast_to_tnfa(gem, cat->right, transitions, counts, offs);
 | |
| 		break;
 | |
| 
 | |
| 	case ITERATION:
 | |
| 		iter = (tre_iteration_t *)node->obj;
 | |
| 		assert(iter->max == -1 || iter->max == 1);
 | |
| 
 | |
| 		if (iter->max == -1)
 | |
| 		{
 | |
| 			assert(iter->min == 0 || iter->min == 1);
 | |
| 			/* Add a transition from each last position in the iterated
 | |
| 			   expression to each first position. */
 | |
| 			errcode = tre_make_trans(gem, iter->arg->lastpos, iter->arg->firstpos,
 | |
| 			                         transitions, counts, offs);
 | |
| 			if (errcode != REG_OK)
 | |
| 				return errcode;
 | |
| 		}
 | |
| 		errcode = tre_ast_to_tnfa(gem, iter->arg, transitions, counts, offs);
 | |
| 		break;
 | |
| 	}
 | |
| 	return errcode;
 | |
| }
 | |
| #endif
 | |
| static reg_errcode_t
 | |
| __tre_ast_to_tnfa(hawk_gem_t *gem, tre_stack_t* stack, tre_ast_node_t *node, tre_tnfa_transition_t *transitions, int *counts, int *offs)
 | |
| {
 | |
| 	tre_union_t *uni;
 | |
| 	tre_catenation_t *cat;
 | |
| 	tre_iteration_t *iter;
 | |
| 	reg_errcode_t errcode = REG_OK;
 | |
| 
 | |
| 	STACK_PUSHR(stack, voidptr, node);
 | |
| 
 | |
| 	while (tre_stack_num_objects(stack))
 | |
| 	{
 | |
| 		node = (tre_ast_node_t*)tre_stack_pop_voidptr(stack);
 | |
| 
 | |
| 		switch (node->type)
 | |
| 		{
 | |
| 			case LITERAL:
 | |
| 				break;
 | |
| 
 | |
| 			case UNION:
 | |
| 				uni = (tre_union_t *)node->obj;
 | |
| 				STACK_PUSHR(stack, voidptr, uni->right);
 | |
| 				STACK_PUSHR(stack, voidptr, uni->left);
 | |
| 				break;
 | |
| 
 | |
| 			case CATENATION:
 | |
| 				cat = (tre_catenation_t *)node->obj;
 | |
| 				/* Add a transition from each position in cat->left->lastpos to each position in cat->right->firstpos. */
 | |
| 				errcode = tre_make_trans(gem, cat->left->lastpos, cat->right->firstpos, transitions, counts, offs);
 | |
| 				if (errcode != REG_OK) return errcode;
 | |
| 
 | |
| 				STACK_PUSHR(stack, voidptr, cat->right);
 | |
| 				STACK_PUSHR(stack, voidptr, cat->left);
 | |
| 				break;
 | |
| 
 | |
| 			case ITERATION:
 | |
| 				iter = (tre_iteration_t *)node->obj;
 | |
| 				if(!(iter->max == -1 || iter->max == 1)) return REG_BADBR;
 | |
| 
 | |
| 				if (iter->max == -1)
 | |
| 				{
 | |
| 					if(!(iter->min == 0 || iter->min == 1)) return REG_BADBR;
 | |
| 					/* Add a transition from each last position in the iterated expression to each first position. */
 | |
| 					errcode = tre_make_trans(gem, iter->arg->lastpos, iter->arg->firstpos, transitions, counts, offs);
 | |
| 					if (errcode != REG_OK) return errcode;
 | |
| 				}
 | |
| 				STACK_PUSHR(stack, voidptr, iter->arg);
 | |
| 				break;
 | |
| 		 }
 | |
| 	}
 | |
| 	return REG_OK;
 | |
| }
 | |
| 
 | |
| static reg_errcode_t
 | |
| tre_ast_to_tnfa(hawk_gem_t* gem, tre_ast_node_t *node, tre_tnfa_transition_t *transitions, int *counts, int *offs)
 | |
| {
 | |
| 	reg_errcode_t x;
 | |
| 	tre_stack_t* stack;
 | |
| 
 | |
| 	stack = tre_stack_new(gem, 1024, -1, 4096);
 | |
| 	if (HAWK_UNLIKELY(!stack)) return REG_ESPACE;
 | |
| 
 | |
| 	x = __tre_ast_to_tnfa(gem, stack, node, transitions, counts, offs);
 | |
| 
 | |
| 	tre_stack_destroy(stack);
 | |
| 	return x;
 | |
| }
 | |
| /* END HAWK */
 | |
| 
 | |
| #define ERROR_EXIT(err) \
 | |
| 	do \
 | |
| 	{ \
 | |
| 		errcode = err; \
 | |
| 		if (/*CONSTCOND*/1) \
 | |
| 			goto error_exit; \
 | |
| 	} \
 | |
| 	while (/*CONSTCOND*/0)
 | |
| 
 | |
| 
 | |
| int tre_compile (regex_t *preg, const tre_char_t *regex, size_t n, int cflags)
 | |
| {
 | |
| 	tre_stack_t *stack;
 | |
| 	tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
 | |
| 	tre_pos_and_tags_t *p;
 | |
| 	int *counts = NULL, *offs = NULL;
 | |
| 	int i, add = 0;
 | |
| 	tre_tnfa_transition_t *transitions, *initial;
 | |
| 	tre_tnfa_t *tnfa = NULL;
 | |
| 	tre_submatch_data_t *submatch_data;
 | |
| 	tre_tag_direction_t *tag_directions = NULL;
 | |
| 	reg_errcode_t errcode;
 | |
| 	tre_mem_t mem;
 | |
| 
 | |
| 	/* Parse context. */
 | |
| 	tre_parse_ctx_t parse_ctx;
 | |
| 
 | |
| 	/* Allocate a stack used throughout the compilation process for various
 | |
| 	   purposes. */
 | |
| /* HAWK: deleted limit on the stack size
 | |
| 	stack = tre_stack_new(preg->gem, 512, 10240, 128); */
 | |
| 	stack = tre_stack_new(preg->gem, 512, -1, 128);
 | |
| 	if (HAWK_UNLIKELY(!stack)) return REG_ESPACE;
 | |
| 	/* Allocate a fast memory allocator. */
 | |
| 	mem = tre_mem_new(preg->gem);
 | |
| 	if (HAWK_UNLIKELY(!mem))
 | |
| 	{
 | |
| 		tre_stack_destroy(stack);
 | |
| 		return REG_ESPACE;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse the regexp. */
 | |
| 	HAWK_MEMSET(&parse_ctx, 0, sizeof(parse_ctx));
 | |
| 	parse_ctx.mem = mem;
 | |
| 	parse_ctx.stack = stack;
 | |
| 	parse_ctx.re = regex;
 | |
| 	parse_ctx.len = n;
 | |
| 	parse_ctx.cflags = cflags;
 | |
| 	parse_ctx.max_backref = -1;
 | |
| 	DPRINT(("tre_compile: parsing '%.*" STRF "'\n", (int)n, regex));
 | |
| 	errcode = tre_parse(&parse_ctx);
 | |
| 	if (errcode != REG_OK) ERROR_EXIT(errcode);
 | |
| 	preg->re_nsub = parse_ctx.submatch_id - 1;
 | |
| 	tree = parse_ctx.result;
 | |
| 
 | |
| 	/* Back references and approximate matching cannot currently be used
 | |
| 	   in the same regexp. */
 | |
| 	if (parse_ctx.max_backref >= 0 && parse_ctx.have_approx)
 | |
| 		ERROR_EXIT(REG_BADPAT);
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 	tre_ast_print(tree);
 | |
| #endif /* TRE_DEBUG */
 | |
| 
 | |
| 	/* Referring to nonexistent subexpressions is illegal. */
 | |
| 	if (parse_ctx.max_backref > (int)preg->re_nsub)
 | |
| 		ERROR_EXIT(REG_ESUBREG);
 | |
| 
 | |
| 	/* Allocate the TNFA struct. */
 | |
| 	tnfa = xcalloc(preg->gem, 1, sizeof(tre_tnfa_t));
 | |
| 	if (HAWK_UNLIKELY(!tnfa)) ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| 	tnfa->have_backrefs = parse_ctx.max_backref >= 0;
 | |
| 	tnfa->have_approx = parse_ctx.have_approx;
 | |
| 	tnfa->num_submatches = parse_ctx.submatch_id;
 | |
| 
 | |
| 	/* Set up tags for submatch addressing.  If REG_NOSUB is set and the
 | |
| 	   regexp does not have back references, this can be skipped. */
 | |
| 	if (tnfa->have_backrefs || !(cflags & REG_NOSUB))
 | |
| 	{
 | |
| 		DPRINT(("tre_compile: setting up tags\n"));
 | |
| 
 | |
| 		/* Figure out how many tags we will need. */
 | |
| 		/*errcode = tre_add_tags(NULL, stack, tree, tnfa); */
 | |
| 		errcode = tre_add_tags(mem, stack, tree, tnfa, 1);
 | |
| 		if (errcode != REG_OK)
 | |
| 			ERROR_EXIT(errcode);
 | |
| #ifdef TRE_DEBUG
 | |
| 		tre_ast_print(tree);
 | |
| #endif /* TRE_DEBUG */
 | |
| 
 | |
| 		if (tnfa->num_tags > 0)
 | |
| 		{
 | |
| 			tag_directions = xmalloc(preg->gem,sizeof(*tag_directions)
 | |
| 			                         * (tnfa->num_tags + 1));
 | |
| 			if (tag_directions == NULL) ERROR_EXIT(REG_ESPACE);
 | |
| 			tnfa->tag_directions = tag_directions;
 | |
| 			HAWK_MEMSET(tag_directions, -1, sizeof(*tag_directions) * (tnfa->num_tags + 1));
 | |
| 		}
 | |
| 		tnfa->minimal_tags = xcalloc(preg->gem, (unsigned)tnfa->num_tags * 2 + 1,
 | |
| 		                             sizeof(tnfa->minimal_tags));
 | |
| 		if (tnfa->minimal_tags == NULL)
 | |
| 			ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| 		submatch_data = xcalloc(preg->gem,(unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
 | |
| 		if (HAWK_UNLIKELY(!submatch_data)) ERROR_EXIT(REG_ESPACE);
 | |
| 		tnfa->submatch_data = submatch_data;
 | |
| 
 | |
| 		errcode = tre_add_tags(mem, stack, tree, tnfa, 0);
 | |
| 		if (errcode != REG_OK) ERROR_EXIT(errcode);
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 		for (i = 0; i < parse_ctx.submatch_id; i++)
 | |
| 			DPRINT(("pmatch[%d] = {t%d, t%d}\n",
 | |
| 			        i, submatch_data[i].so_tag, submatch_data[i].eo_tag));
 | |
| 		for (i = 0; i < tnfa->num_tags; i++)
 | |
| 			DPRINT(("t%d is %s\n", i,
 | |
| 			        tag_directions[i] == TRE_TAG_MINIMIZE ?
 | |
| 			        "minimized" : "maximized"));
 | |
| #endif /* TRE_DEBUG */
 | |
| 	}
 | |
| 
 | |
| 	/* Expand iteration nodes. */
 | |
| 	errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions, &tnfa->params_depth);
 | |
| 	if (errcode != REG_OK) ERROR_EXIT(errcode);
 | |
| 
 | |
| 	/* Add a dummy node for the final state.
 | |
| 	   XXX - For certain patterns this dummy node can be optimized away,
 | |
| 	   for example "a*" or "ab*".	Figure out a simple way to detect
 | |
| 	   this possibility. */
 | |
| 	tmp_ast_l = tree;
 | |
| 	tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
 | |
| 	if (HAWK_UNLIKELY(!tmp_ast_r)) ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| 	tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
 | |
| 	if (HAWK_UNLIKELY(!tree)) ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 	tre_ast_print(tree);
 | |
| 	DPRINT(("Number of states: %d\n", parse_ctx.position));
 | |
| #endif /* TRE_DEBUG */
 | |
| 
 | |
| 	errcode = tre_compute_nfl(mem, stack, tree);
 | |
| 	if (errcode != REG_OK) ERROR_EXIT(errcode);
 | |
| 
 | |
| 	counts = xmalloc(preg->gem,sizeof(int) * parse_ctx.position);
 | |
| 	if (HAWK_UNLIKELY(!counts)) ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| 	offs = xmalloc(preg->gem,sizeof(int) * parse_ctx.position);
 | |
| 	if (HAWK_UNLIKELY(!offs)) ERROR_EXIT(REG_ESPACE);
 | |
| 
 | |
| 	for (i = 0; i < parse_ctx.position; i++)
 | |
| 		counts[i] = 0;
 | |
| 	tre_ast_to_tnfa(preg->gem, tree, NULL, counts, NULL);
 | |
| 
 | |
| 	add = 0;
 | |
| 	for (i = 0; i < parse_ctx.position; i++)
 | |
| 	{
 | |
| 		offs[i] = add;
 | |
| 		add += counts[i] + 1;
 | |
| 		counts[i] = 0;
 | |
| 	}
 | |
| 	transitions = xcalloc(preg->gem, (unsigned)add + 1, sizeof(*transitions));
 | |
| 	if (HAWK_UNLIKELY(!transitions)) ERROR_EXIT(REG_ESPACE);
 | |
| 	tnfa->transitions = transitions;
 | |
| 	tnfa->num_transitions = add;
 | |
| 
 | |
| 	DPRINT(("Converting to TNFA:\n"));
 | |
| 	errcode = tre_ast_to_tnfa(preg->gem, tree, transitions, counts, offs);
 | |
| 	if (errcode != REG_OK) ERROR_EXIT(errcode);
 | |
| 
 | |
| 	/* If in eight bit mode, compute a table of characters that can be the
 | |
| 	   first character of a match. */
 | |
| 	tnfa->first_char = -1;
 | |
| 
 | |
| /* HAWK: deleted */
 | |
| /*
 | |
| 	if (TRE_MB_CUR_MAX == 1 && !tmp_ast_l->nullable)
 | |
| 	{
 | |
| 		int count = 0;
 | |
| 		tre_cint_t k;
 | |
| 		DPRINT(("Characters that can start a match:"));
 | |
| 		tnfa->firstpos_chars = xcalloc(preg->gem, 256, sizeof(char));
 | |
| 		if (tnfa->firstpos_chars == NULL)
 | |
| 			ERROR_EXIT(REG_ESPACE);
 | |
| 		for (p = tree->firstpos; p->position >= 0; p++)
 | |
| 		{
 | |
| 			tre_tnfa_transition_t *j = transitions + offs[p->position];
 | |
| 			while (j->state != NULL)
 | |
| 			{
 | |
| 				for (k = j->code_min; k <= j->code_max && k < 256; k++)
 | |
| 				{
 | |
| 					DPRINT((" %d", k));
 | |
| 					tnfa->firstpos_chars[k] = 1;
 | |
| 					count++;
 | |
| 				}
 | |
| 				j++;
 | |
| 			}
 | |
| 		}
 | |
| 		DPRINT(("\n"));
 | |
| #define TRE_OPTIMIZE_FIRST_CHAR 1
 | |
| #if TRE_OPTIMIZE_FIRST_CHAR
 | |
| 		if (count == 1)
 | |
| 		{
 | |
| 			for (k = 0; k < 256; k++)
 | |
| 				if (tnfa->firstpos_chars[k])
 | |
| 				{
 | |
| 					DPRINT(("first char must be %d\n", k));
 | |
| 					tnfa->first_char = k;
 | |
| 					xfree(preg->gem,tnfa->firstpos_chars);
 | |
| 					tnfa->firstpos_chars = NULL;
 | |
| 					break;
 | |
| 				}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 	}
 | |
| 	else
 | |
| 		tnfa->firstpos_chars = NULL;
 | |
| */
 | |
| /* END HAWK */
 | |
| 
 | |
| 
 | |
| 	p = tree->firstpos;
 | |
| 	i = 0;
 | |
| 	while (p->position >= 0)
 | |
| 	{
 | |
| 		i++;
 | |
| 
 | |
| #ifdef TRE_DEBUG
 | |
| 		{
 | |
| 			int *tags;
 | |
| 			DPRINT(("initial: %d", p->position));
 | |
| 			tags = p->tags;
 | |
| 			if (tags != NULL)
 | |
| 			{
 | |
| 				if (*tags >= 0)
 | |
| 					DPRINT(("/"));
 | |
| 				while (*tags >= 0)
 | |
| 				{
 | |
| 					DPRINT(("%d", *tags));
 | |
| 					tags++;
 | |
| 					if (*tags >= 0)
 | |
| 						DPRINT((","));
 | |
| 				}
 | |
| 			}
 | |
| 			DPRINT((", assert %d", p->assertions));
 | |
| 			if (p->params)
 | |
| 			{
 | |
| 				DPRINT((", "));
 | |
| 				tre_print_params(p->params);
 | |
| 			}
 | |
| 			DPRINT(("\n"));
 | |
| 		}
 | |
| #endif /* TRE_DEBUG */
 | |
| 
 | |
| 		p++;
 | |
| 	}
 | |
| 
 | |
| 	initial = xcalloc(preg->gem, (unsigned)i + 1, sizeof(tre_tnfa_transition_t));
 | |
| 	if (HAWK_UNLIKELY(!initial)) ERROR_EXIT(REG_ESPACE);
 | |
| 	tnfa->initial = initial;
 | |
| 
 | |
| 	i = 0;
 | |
| 	for (p = tree->firstpos; p->position >= 0; p++)
 | |
| 	{
 | |
| 		initial[i].state = transitions + offs[p->position];
 | |
| 		initial[i].state_id = p->position;
 | |
| 		initial[i].tags = NULL;
 | |
| 		/* Copy the arrays p->tags, and p->params, they are allocated
 | |
| 			 from a tre_mem object. */
 | |
| 		if (p->tags)
 | |
| 		{
 | |
| 			int j;
 | |
| 			for (j = 0; p->tags[j] >= 0; j++);
 | |
| 			initial[i].tags = xmalloc(preg->gem,sizeof(*p->tags) * (j + 1));
 | |
| 			if (HAWK_UNLIKELY(!initial[i].tags)) ERROR_EXIT(REG_ESPACE);
 | |
| 			HAWK_MEMCPY (initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
 | |
| 		}
 | |
| 		initial[i].params = NULL;
 | |
| 		if (p->params)
 | |
| 		{
 | |
| 			initial[i].params = xmalloc(preg->gem,sizeof(*p->params) * TRE_PARAM_LAST);
 | |
| 			if (HAWK_UNLIKELY(!initial[i].params)) ERROR_EXIT(REG_ESPACE);
 | |
| 			HAWK_MEMCPY (initial[i].params, p->params, sizeof(*p->params) * TRE_PARAM_LAST);
 | |
| 		}
 | |
| 		initial[i].assertions = p->assertions;
 | |
| 		i++;
 | |
| 	}
 | |
| 	initial[i].state = NULL;
 | |
| 
 | |
| 	tnfa->num_transitions = add;
 | |
| 	tnfa->final = transitions + offs[tree->lastpos[0].position];
 | |
| 	tnfa->num_states = parse_ctx.position;
 | |
| 	tnfa->cflags = cflags;
 | |
| 
 | |
| 	DPRINT(("final state %p\n", (void *)tnfa->final));
 | |
| 
 | |
| 	tre_mem_destroy(mem);
 | |
| 	tre_stack_destroy(stack);
 | |
| 	xfree(preg->gem,counts);
 | |
| 	xfree(preg->gem,offs);
 | |
| 
 | |
| 	preg->TRE_REGEX_T_FIELD = (void *)tnfa;
 | |
| 	return REG_OK;
 | |
| 
 | |
| error_exit:
 | |
| 	/* Free everything that was allocated and return the error code. */
 | |
| 	tre_mem_destroy(mem);
 | |
| 	if (stack) tre_stack_destroy(stack);
 | |
| 	if (counts) xfree(preg->gem,counts);
 | |
| 	if (offs) xfree(preg->gem,offs);
 | |
| 	preg->TRE_REGEX_T_FIELD = (void *)tnfa;
 | |
| 	tre_free(preg);
 | |
| 	return errcode;
 | |
| }
 | |
| 
 | |
| void tre_free (regex_t *preg)
 | |
| {
 | |
| 	tre_tnfa_t *tnfa;
 | |
| 	unsigned int i;
 | |
| 	tre_tnfa_transition_t *trans;
 | |
| 
 | |
| 	tnfa = (void *)preg->TRE_REGEX_T_FIELD;
 | |
| 	if (!tnfa)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < tnfa->num_transitions; i++)
 | |
| 		if (tnfa->transitions[i].state)
 | |
| 		{
 | |
| 			if (tnfa->transitions[i].tags)
 | |
| 				xfree(preg->gem,tnfa->transitions[i].tags);
 | |
| 			if (tnfa->transitions[i].neg_classes)
 | |
| 				xfree(preg->gem,tnfa->transitions[i].neg_classes);
 | |
| 			if (tnfa->transitions[i].params)
 | |
| 				xfree(preg->gem,tnfa->transitions[i].params);
 | |
| 		}
 | |
| 	if (tnfa->transitions)
 | |
| 		xfree(preg->gem,tnfa->transitions);
 | |
| 
 | |
| 	if (tnfa->initial)
 | |
| 	{
 | |
| 		for (trans = tnfa->initial; trans->state; trans++)
 | |
| 		{
 | |
| 			if (trans->tags)
 | |
| 				xfree(preg->gem,trans->tags);
 | |
| 			if (trans->params)
 | |
| 				xfree(preg->gem,trans->params);
 | |
| 		}
 | |
| 		xfree(preg->gem,tnfa->initial);
 | |
| 	}
 | |
| 
 | |
| 	if (tnfa->submatch_data)
 | |
| 	{
 | |
| 		for (i = 0; i < tnfa->num_submatches; i++)
 | |
| 			if (tnfa->submatch_data[i].parents)
 | |
| 				xfree(preg->gem,tnfa->submatch_data[i].parents);
 | |
| 		xfree(preg->gem,tnfa->submatch_data);
 | |
| 	}
 | |
| 
 | |
| 	if (tnfa->tag_directions)
 | |
| 		xfree(preg->gem,tnfa->tag_directions);
 | |
| /* HAWK: deleted */
 | |
| /*
 | |
| 	if (tnfa->firstpos_chars)
 | |
| 		xfree(preg->gem,tnfa->firstpos_chars);
 | |
| */
 | |
| /* END HAWK */
 | |
| 	if (tnfa->minimal_tags)
 | |
| 		xfree(preg->gem,tnfa->minimal_tags);
 | |
| 	xfree(preg->gem,tnfa);
 | |
| }
 | |
| 
 | |
| /* EOF */
 |