1325 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Ada
		
	
	
	
	
	
			
		
		
	
	
			1325 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Ada
		
	
	
	
	
	
| with H2.Pool;
 | |
| 
 | |
| separate (H2.Scheme)
 | |
| 
 | |
| -- The code here assumes that Half_Word_Slot'First is 1. 
 | |
| -- The code breaks if you change the array range to something else, 
 | |
| 
 | |
| package body Bigint is
 | |
| 
 | |
| 	use type System.Bit_Order;
 | |
| 
 | |
| 	Big_Endian: constant := Standard.Boolean'Pos (
 | |
| 		System.Default_Bit_Order = System.High_Order_First
 | |
| 	);
 | |
| 	Little_Endian: constant := Standard.Boolean'Pos (
 | |
| 		System.Default_Bit_Order = System.Low_Order_First
 | |
| 	);
 | |
| 
 | |
| 	--Half_Word_Bits: constant := Object_Pointer_Bits / 2;
 | |
| 	Half_Word_Bits: constant := Object_Half_Word'Size;
 | |
| 	Half_Word_Bytes: constant := Half_Word_Bits / System.Storage_Unit;
 | |
| 
 | |
| 	type Word_Record is record
 | |
| 		Low: Object_Half_Word;
 | |
| 		High: Object_Half_Word;
 | |
| 	end record;
 | |
| 	for Word_Record use record
 | |
| 		--Low at 0 range 0 .. Half_Word_Bits - 1;
 | |
| 		--High at 0 range Half_Word_Bits .. Word_Bits - 1;
 | |
| 		Low  at Half_Word_Bytes * (0 * Little_Endian + 1 * Big_Endian)
 | |
| 		     range 0 .. Half_Word_Bits - 1;
 | |
| 		High at Half_Word_Bytes * (1 * Little_Endian + 0 * Big_Endian)
 | |
| 		     range 0 .. Half_Word_Bits - 1;
 | |
| 	end record;
 | |
| 	for Word_Record'Size use Object_Word'Size;
 | |
| 	--for Word_Record'Size use Object_Pointer_Bits;
 | |
| 	--for Word_Record'Alignment use Object_Word'Alignment;
 | |
| 	--for Word_Record'Scalar_Storage_Order use System.High_Order_First;
 | |
| 	--for Word_Record'Bit_Order use System.High_Order_First;
 | |
| 	--for Word_Record'Bit_Order use System.Low_Order_First;
 | |
| 
 | |
| 	type Half_Word_Bit_Array is array(1 .. Half_Word_Bits) of Object_Bit;
 | |
| 	pragma Pack (Half_Word_Bit_Array);
 | |
| 	for Half_Word_Bit_Array'Size use Half_Word_Bits;
 | |
| 
 | |
| 	type Block_Divisor_Record is record
 | |
| 		Low: Object_Half_Word; -- low half-word of divisor
 | |
| 		High: Object_Half_Word; -- high half-word of divisor
 | |
| 		Length: Object_Size; -- number of digits
 | |
| 	end record;
 | |
| 	Block_Divisors: array (Object_Radix) of Block_Divisor_Record;
 | |
| 	Block_Divisors_Initialized: Standard.Boolean := Standard.False;
 | |
| 	
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Get_Low (W: in Object_Word) return Object_Half_Word is
 | |
| 		R: Word_Record;
 | |
| 		for R'Address use W'Address;
 | |
| 	begin
 | |
| 		return R.Low;	
 | |
| 	end Get_Low;
 | |
| 
 | |
| 	function Get_High (W: in Object_Word) return Object_Half_Word is
 | |
| 		R: Word_Record;
 | |
| 		for R'Address use W'Address;
 | |
| 	begin
 | |
| 		return R.High;	
 | |
| 	end Get_High;
 | |
| 
 | |
| 	function Make_Word (L: in Object_Half_Word;
 | |
| 	                    H: in Object_Half_Word) return Object_Word is
 | |
| 		W: Object_Word;
 | |
| 		R: Word_Record;
 | |
| 		for R'Address use W'Address;
 | |
| 	begin
 | |
| 		R.Low := L;
 | |
| 		R.High := H;
 | |
| 		return W;	
 | |
| 	end Make_Word;
 | |
| 
 | |
| 	function Decode_To_Word (X:    in     Object_Pointer;
 | |
| 	                         Word: access Object_Word;
 | |
| 	                         Sign: access Object_Sign) return Standard.Boolean is
 | |
| 	begin
 | |
| 		if Is_Integer(X) then
 | |
| 			declare
 | |
| 				I: Object_Integer := Pointer_To_Integer(X);
 | |
| 			begin
 | |
| 				if I < 0 then
 | |
| 					-- Convert the negative number to a positive word.
 | |
| 					Word.all := Object_Word(-(I + 1)) + 1;
 | |
| 					Sign.all := Negative_Sign; 
 | |
| 				else
 | |
| 					Word.all := Object_Word(I);
 | |
| 					Sign.all := Positive_Sign;
 | |
| 				end if;
 | |
| 			end;
 | |
| 		else
 | |
| 			case X.Size is
 | |
| 				when 1 =>
 | |
| 					Word.all := Object_Word(X.Half_Word_Slot(1));
 | |
| 				when 2 =>
 | |
| 					Word.all := Make_Word(X.Half_Word_Slot(1), X.Half_Word_Slot(2));
 | |
| 				when others =>
 | |
| 					return Standard.False;
 | |
| 			end case;
 | |
| 			Sign.all := X.Sign;
 | |
| 		end if;
 | |
| 		return Standard.True;
 | |
| 	end Decode_To_Word;
 | |
| 
 | |
| 	procedure Convert_Word_To_Text (Word:   in     Object_Word; 
 | |
| 	                                Radix:  in     Object_Radix;
 | |
| 	                                Buffer: in out Object_Character_Array;
 | |
| 	                                Length: out    Object_Size) is
 | |
| 		V: Object_Word;
 | |
| 		W: Object_Word := Word;
 | |
| 		Len: Object_Size := 0;
 | |
| 	begin
 | |
| 		loop
 | |
| 			V := W rem Object_Word(Radix);
 | |
| 			
 | |
| 			if V in 0 .. 9 then
 | |
| 				Buffer(Buffer'First + Len) := Object_Character'Val(Object_Character'Pos(Ch_Val.Zero) + V);
 | |
| 			else
 | |
| 				Buffer(Buffer'First + Len) := Object_Character'Val(Object_Character'Pos(Ch_Val.UC_A) + V - 10);
 | |
| 			end if;
 | |
| 			Len := Len + 1;
 | |
| 			
 | |
| 			W := W / Object_Word(Radix);
 | |
| 			exit when W <= 0;
 | |
| 		end loop;
 | |
| 			
 | |
| 		Length := Len; 
 | |
| 	end Convert_Word_To_Text;
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Is_Less_Unsigned_Array (X:  in Object_Half_Word_Array;
 | |
| 	                                 XS: in Half_Word_Object_Size;
 | |
| 	                                 Y:  in Object_Half_Word_Array;
 | |
| 	                                 YS: in Half_Word_Object_Size) return Standard.Boolean is
 | |
| 		pragma Inline (Is_Less_Unsigned_Array);
 | |
| 	begin
 | |
| 		if XS /= YS then
 | |
| 			return XS < YS;
 | |
| 		end if;
 | |
| 
 | |
| 		for I in reverse 1 .. XS loop
 | |
| 			if X(I) /= Y(I) then
 | |
| 				return X(I) < Y(I);
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 
 | |
| 		return Standard.False;
 | |
| 	end Is_Less_Unsigned_Array;
 | |
| 	
 | |
| 	function Is_Less_Unsigned (X: in Object_Pointer;
 | |
| 	                           Y: in Object_Pointer) return Standard.Boolean is
 | |
| 		pragma Inline (Is_Less_Unsigned);
 | |
| 	begin
 | |
| 		return Is_Less_Unsigned_Array(X.Half_Word_Slot, X.Size, Y.Half_Word_Slot, Y.Size);
 | |
| 	end Is_Less_Unsigned;
 | |
| 
 | |
| 	function Is_Less (X: in Object_Pointer;
 | |
| 	                  Y: in Object_Pointer) return Standard.Boolean is
 | |
| 	begin
 | |
| 		if X.Sign /= Y.Sign then
 | |
| 			return X.Sign = Negative_Sign;
 | |
| 		end if;
 | |
| 		return Is_Less_Unsigned(X, Y);
 | |
| 	end Is_Less;
 | |
| 
 | |
| 	function Is_Equal (X: in Object_Pointer;
 | |
| 	                   Y: in Object_Pointer) return Standard.Boolean is
 | |
| 	begin
 | |
| 		return X.Sign = Y.Sign and then 
 | |
| 		       X.Size = Y.Size and then
 | |
| 		       X.Half_Word_Slot = Y.Half_Word_Slot;
 | |
| 	end Is_Equal;
 | |
| 
 | |
| 	function Is_Zero (X: in Object_Pointer) return Standard.Boolean is
 | |
| 		pragma Inline (Is_Zero);
 | |
| 	begin
 | |
| 		return X.Size = 1 and then X.Half_Word_Slot(1) = 0;
 | |
| 	end Is_Zero;
 | |
| 
 | |
| 	function Is_One_Unsigned (X: in Object_Pointer) return Standard.Boolean is
 | |
| 		pragma Inline (Is_One_Unsigned);
 | |
| 	begin
 | |
| 		return X.Size = 1 and then X.Half_Word_Slot(1) = 1;
 | |
| 	end Is_One_Unsigned;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 	function Copy_Upto (Interp: access Interpreter_Record;
 | |
| 	                    X:      in     Object_Pointer;
 | |
| 	                    Last:   in     Half_Word_Object_Size) return Object_Pointer is
 | |
| 		pragma Assert (Last <= X.Size);
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		Z: Object_Pointer;
 | |
| 	begin
 | |
| 		Push_Top (Interp.all, A'Unchecked_Access);
 | |
| 		Z := Make_Bigint(Interp, Size => Last);
 | |
| 		Pop_Tops (Interp.all, 1);
 | |
| 		Z.Sign := A.Sign;
 | |
| 		Z.Half_Word_Slot := A.Half_Word_Slot(1 .. Last);
 | |
| 		return Z;
 | |
| 	end Copy_Upto;
 | |
| 
 | |
| 	function Count_Effective_Array_Slots (X:  in Object_Half_Word_Array; 
 | |
| 	                                      XS: in Half_Word_Object_Size) return Half_Word_Object_Size is
 | |
| 		pragma Inline (Count_Effective_Array_Slots);
 | |
| 		Last: Half_Word_Object_Size := 1;
 | |
| 	begin
 | |
| 		for I in reverse 1 .. XS loop
 | |
| 			if X(I) /= 0 then
 | |
| 				Last := I;
 | |
| 				exit;
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 		return Last;
 | |
| 	end Count_Effective_Array_Slots;
 | |
| 	
 | |
| 	function Count_Effective_Slots (X: in Object_Pointer) return Half_Word_Object_Size is
 | |
| 		pragma Inline (Count_Effective_Slots);
 | |
| 	begin
 | |
| 		return Count_Effective_Array_Slots(X.Half_Word_Slot, X.Size);
 | |
| 	end Count_Effective_Slots;
 | |
| 
 | |
| 	function Normalize (Interp: access Interpreter_Record;
 | |
| 	                    X:      in     Object_Pointer) return Object_Pointer is
 | |
| 		Last: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		Last := Count_Effective_Slots(X);
 | |
| 
 | |
| 		case Last is
 | |
| 			when 1 =>
 | |
| 				if X.Sign = Negative_Sign then
 | |
| 					return Integer_To_Pointer(-Object_Integer(X.Half_Word_Slot(1)));
 | |
| 				else
 | |
| 					return Integer_To_Pointer(Object_Integer(X.Half_Word_Slot(1)));
 | |
| 				end if;
 | |
| 
 | |
| 			when 2 =>
 | |
| 				declare
 | |
| 					W: Object_Word := Make_Word(X.Half_Word_Slot(1), X.Half_Word_Slot(2));
 | |
| 				begin
 | |
| 					if X.Sign = Negative_Sign then
 | |
| 						if W in 0 .. Object_Word(-Object_Signed_Word(Object_Integer'First)) then
 | |
| 							return Integer_To_Pointer(-Object_Integer(W));
 | |
| 						end if;
 | |
| 					else
 | |
| 						if W in 0 .. Object_Word(Object_Integer'Last) then
 | |
| 							return Integer_To_Pointer(Object_Integer(W));
 | |
| 						end if;
 | |
| 					end if;
 | |
| 				end;
 | |
| 
 | |
| 			when others =>
 | |
| 				null;
 | |
| 		end case;
 | |
| 
 | |
| 		if X.Size = Last then
 | |
| 			-- No compaction is needed. return it as it is
 | |
| 			return X;
 | |
| 		end if;
 | |
| 
 | |
| 		-- Remove unneeded slots and clone meaningful contents only.
 | |
| 		return Copy_Upto(Interp, X, Last);
 | |
| 	end Normalize;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	generic
 | |
| 		with function Operator (X: in Object_Integer; 
 | |
| 		                        Y: in Object_Integer) return Object_Integer;
 | |
| 	procedure Plain_Integer_Op (Interp: in out Interpreter_Record;
 | |
| 	                            X:      in out Object_Pointer;
 | |
| 	                            Y:      in out Object_Pointer;
 | |
| 	                            Z:      out    Object_Pointer);
 | |
| 
 | |
| 	procedure Plain_Integer_Op (Interp: in out Interpreter_Record;
 | |
| 	                            X:      in out Object_Pointer;
 | |
| 	                            Y:      in out Object_Pointer;
 | |
| 	                            Z:      out    Object_Pointer) is
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		B: aliased Object_Pointer := Y;
 | |
| 	begin
 | |
| 		if Is_Integer(A) and then Is_Integer(B) then
 | |
| 			declare
 | |
| 				--pragma Unsuppress (Range_Check);
 | |
| 				--pragma Unsuppress (Overflow_Check);
 | |
| 
 | |
| 				G: Object_Integer := Pointer_To_Integer(A);
 | |
| 				H: Object_Integer := Pointer_To_Integer(B);
 | |
| 			begin
 | |
| 				X := A;
 | |
| 				Y := B;
 | |
| 				Z := Integer_To_Pointer(Operator(G, H));
 | |
| 				return;
 | |
| 			exception
 | |
| 				when Constraint_Error =>
 | |
| -- TODO: don't count on Constraint_Error exception.
 | |
| 					Push_Top (Interp, A'Unchecked_Access);
 | |
| 					Push_Top (Interp, B'Unchecked_Access);
 | |
| -- TODO: allocate A and B from a non-GC heap.
 | |
| -- I know that pointers returned by Make_Bigint here are short-lived
 | |
| -- and not needed after actual operation. non-GC heap is a better choice.
 | |
| 					A := Make_Bigint(Interp.Self, Value => G);
 | |
| 					B := Make_Bigint(Interp.Self, Value => H);
 | |
| 					Pop_Tops (Interp, 2);
 | |
| 			end;
 | |
| 		else
 | |
| 			Push_Top (Interp, A'Unchecked_Access);
 | |
| 			Push_Top (Interp, B'Unchecked_Access);
 | |
| 			if Is_Integer(A) then
 | |
| 				A := Make_Bigint(Interp.Self, Value => Pointer_To_Integer(A));
 | |
| 			end if;
 | |
| 			if Is_Integer(B) then
 | |
| 				B := Make_Bigint(Interp.Self, Value => Pointer_To_Integer(B));
 | |
| 			end if;
 | |
| 			Pop_Tops (Interp, 2);
 | |
| 		end if;
 | |
| 
 | |
| 		X := A;
 | |
| 		Y := B;
 | |
| 		Z := null;
 | |
| 	end Plain_Integer_Op;
 | |
| 
 | |
| 	procedure Add_Integers is new Plain_Integer_Op (Operator => "+");
 | |
| 	procedure Subtract_Integers is new Plain_Integer_Op (Operator => "-");
 | |
| 	procedure Multiply_Integers is new Plain_Integer_Op (Operator => "*");
 | |
| 	procedure Divide_Integers is new Plain_Integer_Op (Operator => "/");
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Half_Word_Bit_Position (Pos: in Standard.Positive) return Standard.Natural is
 | |
| 		pragma Inline (Half_Word_Bit_Position);
 | |
| 	begin
 | |
| 		return (Pos * Little_Endian) + ((Half_Word_Bits - Pos + 1) * Big_Endian);
 | |
| 	end Half_Word_Bit_Position;
 | |
| 	
 | |
| 	function Get_Half_Word_Bit (X:   in Object_Half_Word;
 | |
| 	                            Pos: in Standard.Positive) return Object_Bit is
 | |
| 		pragma Inline (Get_Half_Word_Bit);
 | |
| 		BA: Half_Word_Bit_Array;
 | |
| 		for BA'Address use X'Address;
 | |
| 	begin
 | |
| 		return BA(Half_Word_Bit_Position(Pos));
 | |
| 	end Get_Half_Word_Bit;
 | |
| 	
 | |
| 	procedure Set_Half_Word_Bit (X:   in out Object_Half_Word;
 | |
| 	                             Pos: in     Standard.Positive;
 | |
| 	                             Bit: in     Object_Bit) is
 | |
| 		pragma Inline (Set_Half_Word_Bit);
 | |
| 		BA: Half_Word_Bit_Array;
 | |
| 		for BA'Address use X'Address;
 | |
| 	begin
 | |
| 		BA(Half_Word_Bit_Position(Pos)) := Bit;
 | |
| 	end Set_Half_Word_Bit;
 | |
| 	
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Shift_Half_Word_Left (W:    in Object_Half_Word; 
 | |
| 	                               Bits: in Standard.Natural) return Object_Half_Word is
 | |
| 		pragma Inline (Shift_Half_Word_Left);
 | |
| 	begin
 | |
| 		--if Bits >= W'Size then 
 | |
| 		--	return 0;
 | |
| 		--end if;
 | |
| 		return W * (2 ** Bits);
 | |
| 	end Shift_Half_Word_Left;
 | |
| 
 | |
| 	function Shift_Half_Word_Right (W:    in Object_Half_Word; 
 | |
| 	                                Bits: in Standard.Natural) return Object_Half_Word is
 | |
| 		pragma Inline (Shift_Half_Word_Right);
 | |
| 	begin
 | |
| 		if Bits >= W'Size then
 | |
| 			-- prevent divide-by-zero in case 2 ** Bits becomes 0 
 | |
| 			-- for overflow.
 | |
| 			return 0;
 | |
| 		end if;
 | |
| 		return W / (2 ** Bits);
 | |
| 	end Shift_Half_Word_Right;
 | |
| 	
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	procedure Shift_Left_Unsigned_Array (X:    in out Object_Half_Word_Array;
 | |
| 	                                     XS:   in     Half_Word_Object_Size;
 | |
| 	                                     Bits: in     Object_Size) is
 | |
| 		Word_Shifts: Object_Size; -- half-word shift count
 | |
| 		Bit_Shifts: Standard.Natural; -- bit shift count
 | |
| 		Bit_Shifts_Right: Standard.Natural;
 | |
| 		SI: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		-- This function doesn't grow/shrink the array. Shifting is performed
 | |
| 		-- within the given array size only.
 | |
| 
 | |
| 		-- Get how many half-words to shift.
 | |
| 		Word_Shifts := Bits / Half_Word_Bits;
 | |
| 		if Word_Shifts >= XS then
 | |
| 			X(1 .. XS) := (others => 0);
 | |
| 			return;
 | |
| 		end if;
 | |
| 
 | |
| 		-- Get how many remaining bits to shift
 | |
| 		Bit_Shifts := Standard.Natural(Bits rem Half_Word_Bits);
 | |
| 		Bit_Shifts_Right := Half_Word_Bits - Bit_Shifts;
 | |
| 
 | |
| 		-- Shift words and bits
 | |
| 		SI := XS - Word_Shifts;
 | |
| 		X(XS) := Shift_Half_Word_Left(X(SI), Bit_Shifts);
 | |
| 		for DI in reverse Object_Size(Word_Shifts) + 1 .. XS - 1 loop
 | |
| 			SI := DI - Word_Shifts; -- Source Index
 | |
| 			X(DI + 1) := X(DI + 1) or Shift_Half_Word_Right(X(SI), Bit_Shifts_Right);
 | |
| 			X(DI) := Shift_Half_Word_Left(X(SI), Bit_Shifts);
 | |
| 		end loop;
 | |
| 
 | |
| 		-- Fill the remaining part with zeros
 | |
| 		X(1 .. Object_Size(Word_Shifts)) := (others => 0);
 | |
| 	end Shift_Left_Unsigned_Array;
 | |
| 
 | |
| 	procedure Shift_Right_Unsigned_Array (X:    in out Object_Half_Word_Array;
 | |
| 	                                      XS:   in     Half_Word_Object_Size;
 | |
| 	                                      Bits: in     Object_Size) is
 | |
| 	                                     
 | |
| 		Word_Shifts: Object_Size; -- half-word shift count
 | |
| 		Bit_Shifts: Standard.Natural; -- bit shift count
 | |
| 		Bit_Shifts_Left: Standard.Natural;
 | |
| 		SI: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		-- This function doesn't grow/shrink the array. Shifting is performed
 | |
| 		-- within the given array size only.
 | |
| 
 | |
| 		-- Get how many half-words to shift.
 | |
| 		Word_Shifts := Bits / Half_Word_Bits;
 | |
| 		if Word_Shifts >= XS then
 | |
| 			X(1 .. XS) := (others => 0);
 | |
| 			return;
 | |
| 		end if;
 | |
| 		
 | |
| 		-- Get how many remaining bits to shift
 | |
| 		Bit_Shifts := Standard.Natural(Bits rem Half_Word_Bits);
 | |
| 		Bit_Shifts_Left := Half_Word_Bits - Bit_Shifts;
 | |
| 
 | |
| 		-- Shift words and bits
 | |
| 		SI := 1 + Word_Shifts;
 | |
| 		X(1) := Shift_Half_Word_Right(X(SI), Bit_Shifts);
 | |
| 		for DI in 2 .. XS - 1 loop
 | |
| 			SI := DI + Word_Shifts; -- Source Index
 | |
| 			X(DI - 1) := X(DI - 1) or Shift_Half_Word_Right(X(SI), Bit_Shifts_Left);
 | |
| 			X(DI) := Shift_Half_Word_Right(X(SI), Bit_Shifts);
 | |
| 		end loop;
 | |
| 
 | |
| 		-- Fill the remaining part with zeros
 | |
| 		X(XS - Half_Word_Object_Size(Word_Shifts) + 1 .. XS) := (others => 0);
 | |
| 	end Shift_Right_Unsigned_Array;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	procedure Add_Unsigned_Array (X:      in     Object_Half_Word_Array;
 | |
| 	                              XS:     in     Half_Word_Object_Size;
 | |
| 	                              Y:      in     Object_Half_Word_Array;
 | |
| 	                              YS:     in     Half_Word_Object_Size;
 | |
| 	                              Z:      in out Object_Half_Word_Array) is
 | |
| 		pragma Inline (Add_Unsigned_Array);
 | |
| 		pragma Assert (XS >= YS);
 | |
| 		W: Object_Word;
 | |
| 		Carry: Object_Half_Word := 0;
 | |
| 	begin
 | |
| 		for I in 1 .. YS loop
 | |
| 			W := Object_Word(X(I)) + Object_Word(Y(I)) + Object_Word(Carry);
 | |
| 			Carry := Get_High(W);
 | |
| 			Z(I)	:= Get_Low(W);
 | |
| 		end loop;
 | |
| 
 | |
| 		for I in YS + 1 .. XS loop
 | |
| 			W := Object_Word(X(I)) + Object_Word(Carry);
 | |
| 			Carry := Get_High(W);
 | |
| 			Z(I)	:= Get_Low(W);
 | |
| 		end loop;
 | |
| 
 | |
| 		Z(XS + 1) := Carry;
 | |
| 	end Add_Unsigned_Array;
 | |
| 	
 | |
| 	function Add_Unsigned (Interp: access Interpreter_Record;
 | |
| 	                       X:      in     Object_Pointer;
 | |
| 	                       Y:      in     Object_Pointer) return Object_Pointer is
 | |
| 		A, B: aliased Object_Pointer;
 | |
| 		Z: Object_Pointer;
 | |
| 	begin
 | |
| 		if X.Size >= Y.Size then
 | |
| 			A := X;
 | |
| 			B := Y;
 | |
| 		else
 | |
| 			A := Y;
 | |
| 			B := X;
 | |
| 		end if;
 | |
| 
 | |
| 		Push_Top (Interp.all, A'Unchecked_Access);
 | |
| 		Push_Top (Interp.all, B'Unchecked_Access);
 | |
| 		Z := Make_Bigint (Interp.Self, A.Size + 1);
 | |
| 		Pop_Tops (Interp.all, 2);
 | |
| 
 | |
| 		Add_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, Z.Half_Word_Slot);
 | |
| 		return Z;
 | |
| 	end Add_Unsigned;
 | |
| 	
 | |
| 	procedure Subtract_Unsigned_Array (X:      in     Object_Half_Word_Array;
 | |
| 	                                   XS:     in     Half_Word_Object_Size;
 | |
| 	                                   Y:      in     Object_Half_Word_Array;
 | |
| 	                                   YS:     in     Half_Word_Object_Size;
 | |
| 	                                   Z:      in out Object_Half_Word_Array) is
 | |
| 		W: Object_Word;
 | |
| 		Borrowed_Word: constant Object_Word := Object_Word(Object_Half_Word'Last) + 1;
 | |
| 		Borrow: Object_Half_Word := 0;
 | |
| 	begin
 | |
| 		pragma Assert (not Is_Less_Unsigned_Array(X, XS, Y, YS)); -- The caller must ensure that X >= Y
 | |
| 		
 | |
| 		for I in 1 .. YS loop
 | |
| 			W := Object_Word(Y(I)) + Object_Word(Borrow);
 | |
| 			if Object_Word(X(I)) >= W then
 | |
| 				Z(I) := X(I) - Object_Half_Word(W);
 | |
| 				Borrow := 0;
 | |
| 			else
 | |
| 				Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - W);
 | |
| 				Borrow := 1;
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 
 | |
| 		for I in YS + 1 .. XS loop
 | |
| 			if X(I) >= Borrow then
 | |
| 				Z(I) := X(I) - Object_Half_Word(Borrow);
 | |
| 				Borrow := 0;
 | |
| 			else
 | |
| 				Z(I) := Object_Half_Word(Borrowed_Word + Object_Word(X(I)) - Object_Word(Borrow));
 | |
| 				Borrow := 1;
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 
 | |
| 		pragma Assert (Borrow = 0);
 | |
| 	end Subtract_Unsigned_Array;
 | |
| 
 | |
| 	function Subtract_Unsigned (Interp: access Interpreter_Record;
 | |
| 	                            X:      in     Object_Pointer;
 | |
| 	                            Y:      in     Object_Pointer) return Object_Pointer is
 | |
| 		pragma Inline (Subtract_Unsigned);
 | |
| 
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		B: aliased Object_Pointer := Y;
 | |
| 		Z: Object_Pointer;
 | |
| 	begin
 | |
| 		pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
 | |
| 
 | |
| 		Push_Top (Interp.all, A'Unchecked_Access);
 | |
| 		Push_Top (Interp.all, B'Unchecked_Access);
 | |
| 		Z := Make_Bigint (Interp.Self, A.Size); -- Assume X.Size >= Y.Size.
 | |
| 		Pop_Tops (Interp.all, 2);
 | |
| 
 | |
| 		Subtract_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_SLot, B.Size, Z.Half_Word_Slot);
 | |
| 		return Z;
 | |
| 	end Subtract_Unsigned;
 | |
| 
 | |
| 	procedure Multiply_Unsigned_Array (X:      in     Object_Half_Word_Array;
 | |
| 	                                   XS:     in     Half_Word_Object_Size;
 | |
| 	                                   Y:      in     Object_Half_Word_Array;
 | |
| 	                                   YS:     in     Half_Word_Object_Size;
 | |
| 	                                   Z:      in out Object_Half_Word_Array) is
 | |
| 		W: Object_Word;
 | |
| 		Low, High: Object_Half_Word;
 | |
| 		Carry: Object_Half_Word;
 | |
| 		Index: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		for I in 1 .. YS loop
 | |
| 			if Y(I) = 0 then
 | |
| 				Z(XS + I) := 0;
 | |
| 			else
 | |
| 				Carry := 0;
 | |
| 
 | |
| 				for J in 1 .. XS loop
 | |
| 					W := Object_Word(X(J)) * Object_Word(Y(I));
 | |
| 					Low := Get_Low(W);
 | |
| 					High := Get_High(W);
 | |
| 
 | |
| 					Low := Low + Carry;
 | |
| 					if Low < Carry then
 | |
| 						High := High + 1;
 | |
| 					end if;
 | |
| 
 | |
| 					Index := J + I - 1;
 | |
| 					Low := Low + Z(Index);
 | |
| 					if Low < Z(Index) then
 | |
| 						High := High + 1;
 | |
| 					end if;
 | |
| 					Z(Index) := Low;
 | |
| 
 | |
| 					Carry := High;
 | |
| 				end loop;
 | |
| 
 | |
| 
 | |
| 				Z(XS + I) := Carry;
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 	end Multiply_Unsigned_Array;
 | |
| 	
 | |
| 	function Multiply_Unsigned (Interp: access Interpreter_Record;
 | |
| 	                            X:      in     Object_Pointer;
 | |
| 	                            Y:      in     Object_Pointer) return Object_Pointer is
 | |
| 		pragma Inline (Multiply_Unsigned);
 | |
| 		
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		B: aliased Object_Pointer := Y;
 | |
| 		Z: Object_Pointer;
 | |
| 	begin
 | |
| 		Push_Top (Interp.all, A'Unchecked_Access);
 | |
| 		Push_Top (Interp.all, B'Unchecked_Access);
 | |
| 		Z := Make_Bigint (Interp.Self, A.Size + B.Size);
 | |
| 		Pop_Tops (Interp.all, 2);
 | |
| 
 | |
| 		Multiply_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, Z.Half_Word_Slot);
 | |
| 		return Z;
 | |
| 	end Multiply_Unsigned;
 | |
| 
 | |
| 	procedure Divide_Unsigned_Array (X:  in     Object_Half_Word_Array;
 | |
| 	                                 XS: in     Half_Word_Object_Size;
 | |
| 	                                 Y:  in out Object_Half_Word_Array;
 | |
| 	                                 YS: in     Half_Word_Object_Size;
 | |
| 	                                 Q:  in out Object_Half_Word_Array;
 | |
| 	                                 R:  in out Object_Half_Word_Array) is
 | |
| 		Bits: constant Object_Size := XS * Half_Word_Bits;
 | |
| 		Word_Pos: Object_Size;
 | |
| 		Bit_Pos: Standard.Positive;
 | |
| 		RS: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		-- Perform binary long division.
 | |
| 		-- http://en.wikipedia.org/wiki/Division_algorithm
 | |
| 		--Q := 0                 initialize quotient and remainder to zero
 | |
| 		--R := 0                     
 | |
| 		--for i = n-1...0 do     where n is number of bits in N
 | |
| 		--  R := R << 1          left-shift R by 1 bit    
 | |
| 		--  R(0) := X(i)         set the least-significant bit of R equal to bit i of the numerator
 | |
| 		--  if R >= Y then
 | |
| 		--    R = R - Y               
 | |
| 		--    Q(i) := 1
 | |
| 		--  end
 | |
| 		--end 
 | |
| 		
 | |
| 		Q := (others => 0);
 | |
| 		R := (others => 0);
 | |
| 
 | |
| 		for I in reverse 1 .. Bits loop
 | |
| 			Word_Pos := (I - 1) / Half_Word_Bits + 1;
 | |
| 			Bit_Pos := Standard.Positive((I - 1) rem Half_Word_Bits + 1);
 | |
| 
 | |
| 			Shift_Left_Unsigned_Array (R, XS, 1);
 | |
| 			Set_Half_Word_Bit (R(1), 1, Get_Half_Word_Bit(X(Word_Pos), Bit_Pos));
 | |
| 
 | |
| 			RS := Count_Effective_Array_Slots (R, XS);
 | |
| 			if not Is_Less_Unsigned_Array(R, RS, Y, YS) then
 | |
| 				Subtract_Unsigned_Array (R, RS, Y, YS, R);
 | |
| 				Set_Half_Word_Bit (Q(Word_Pos), Bit_Pos, 1);
 | |
| 			end if;
 | |
| 		end loop;
 | |
| 	end Divide_Unsigned_Array;
 | |
| 	
 | |
| 	                                 
 | |
| 	procedure Divide_Unsigned (Interp: in out Interpreter_Record;
 | |
| 	                           X:      in     Object_Pointer;
 | |
| 	                           Y:      in     Object_Pointer;
 | |
| 	                           Q:      out    Object_Pointer;
 | |
| 	                           R:      out    Object_Pointer) is
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		B: aliased Object_Pointer := Y;
 | |
| 		C: aliased Object_Pointer;
 | |
| 		D: aliased Object_Pointer;
 | |
| 	begin
 | |
| 		pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
 | |
| 
 | |
| 		Push_Top (Interp, A'Unchecked_Access);
 | |
| 		Push_Top (Interp, B'Unchecked_Access);
 | |
| 		Push_Top (Interp, C'Unchecked_Access);
 | |
| 		Push_Top (Interp, D'Unchecked_Access);
 | |
| 		C := Make_Bigint(Interp.Self, Size => A.Size);
 | |
| 		D := Make_Bigint(Interp.Self, Size => A.Size);
 | |
| 		Pop_Tops (Interp, 4);
 | |
| 
 | |
| 		Divide_Unsigned_Array (A.Half_Word_Slot, A.Size, B.Half_Word_Slot, B.Size, C.Half_Word_Slot, D.Half_Word_Slot);
 | |
| 
 | |
| 		Q := C;
 | |
| 		R := D;
 | |
| 	end Divide_Unsigned;
 | |
| 
 | |
| 	procedure Divide_Unsigned_2 (Interp: in out Interpreter_Record;
 | |
| 	                           X:      in     Object_Pointer;
 | |
| 	                           Y:      in     Object_Pointer;
 | |
| 	                           Q:      out    Object_Pointer;
 | |
| 	                           R:      out    Object_Pointer) is
 | |
| 		A: aliased Object_Pointer := X;
 | |
| 		B: aliased Object_Pointer := Y;
 | |
| 
 | |
| 		Quo: aliased Object_Pointer;
 | |
| 		Dend: aliased Object_Pointer; -- Dividend
 | |
| 		Sor: aliased Object_Pointer; -- Divisor
 | |
| 		Tmp: Object_Pointer;
 | |
| 
 | |
| 		Diff: Half_Word_Object_Size;
 | |
| 		Dend_Size: Half_Word_Object_Size;
 | |
| 		Sor_Size: Half_Word_Object_Size;
 | |
| 		Tmp_Size: Half_Word_Object_Size;
 | |
| 
 | |
| 		Cand_W: Object_Word;
 | |
| 		Cand: Object_Half_Word_Array (1 .. 2);
 | |
| 		Cand_Size: Half_Word_Object_Size;
 | |
| 	begin
 | |
| 		pragma Assert (not Is_Less_Unsigned(A, B)); -- The caller must ensure that X >= Y
 | |
| 
 | |
| 		Push_Top (Interp, A'Unchecked_Access);
 | |
| 		Push_Top (Interp, B'Unchecked_Access);
 | |
| 		Push_Top (Interp, Quo'Unchecked_Access);
 | |
| 		Push_Top (Interp, Dend'Unchecked_Access);
 | |
| 		Push_Top (Interp, Sor'Unchecked_Access);
 | |
| 		Quo := Make_Bigint (Interp.Self, A.Size);
 | |
| 		Dend := Make_Bigint (Interp.Self, A.Size);
 | |
| 		Sor := Make_Bigint (Interp.Self, A.Size);
 | |
| 		Tmp := Make_Bigint (Interp.Self, A.Size + 2); -- Is it enough? A.Size + B.Size is safer
 | |
| 		Pop_Tops (Interp, 5);
 | |
| 
 | |
| 		Dend_Size := A.Size;
 | |
| 		Sor_Size := A.Size;
 | |
| 		Diff := A.Size - B.Size;
 | |
| 		Dend.Half_Word_Slot := A.Half_Word_Slot;
 | |
| 		Sor.Half_Word_Slot(1 + Diff .. B.Size + Diff) := B.Half_Word_Slot;
 | |
| 
 | |
| 		for I in reverse B.Size .. A.Size loop
 | |
| 			-- TODO: Optimize the alogrighm further. the adjustment loop may take very long.
 | |
| 			if not Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Sor.Half_Word_Slot, Sor_Size) then
 | |
| 				if Dend_Size > Sor_Size then
 | |
| 					-- Take the 2 high digits from the dividend and 
 | |
| 					-- the highest digit from the divisor and guess the quotient digits.
 | |
| 					Cand_W := Make_Word(Dend.Half_Word_Slot(Dend_Size - 1), Dend.Half_Word_Slot(Dend_Size));
 | |
| 					Cand_W := Cand_W / Object_Word(Sor.Half_Word_Slot(Sor_Size));
 | |
| 					Cand(1) := Get_Low(Cand_W);
 | |
| 					Cand(2) := Get_High(Cand_W);
 | |
| 					if Cand(2) > 0 then
 | |
| 						Cand_Size := 2;
 | |
| 					else
 | |
| 						Cand_Size := 1;
 | |
| 					end if;
 | |
| 				else
 | |
| 					-- Take the highest digit from the dividend and the divisor 
 | |
| 					-- and guess the quotient digit.
 | |
| 					Cand(1) := Dend.Half_Word_Slot(Dend_Size) / Sor.Half_Word_Slot(Sor_Size);
 | |
| 					Cand_Size := 1;
 | |
| 				end if;
 | |
| 
 | |
| 				-- Multiply the divisor and the quotient candidate.
 | |
| 				Tmp.Half_Word_Slot := (others => 0);
 | |
| 				Multiply_Unsigned_Array (Cand, Cand_Size, Sor.Half_Word_Slot, Sor_Size, Tmp.Half_Word_Slot);
 | |
| 				Tmp_Size := Count_Effective_Slots(Tmp);
 | |
| 
 | |
| 				-- Adjust down the guess while the dividend is less than the multiplication result. 
 | |
| 				while Is_Less_Unsigned_Array(Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size) loop
 | |
| 					Cand(1) := Cand(1) - 1;
 | |
| 
 | |
| 					-- Tmp := Tmp - Divisor		
 | |
| 					Subtract_Unsigned_Array (Tmp.Half_Word_Slot, Tmp_Size, Sor.Half_Word_Slot, Sor_Size, Tmp.Half_Word_Slot);
 | |
| 					Tmp_Size := Count_Effective_Slots(Tmp);
 | |
| 				end loop;
 | |
| 
 | |
| 				-- Set the guess to the quotient.
 | |
| 				Quo.Half_Word_Slot(I - B.Size + 1) := Cand(1);
 | |
| 				
 | |
| 				-- Dividend := Dividend - Tmp			
 | |
| 				Subtract_Unsigned_Array (Dend.Half_Word_Slot, Dend_Size, Tmp.Half_Word_Slot, Tmp_Size, Dend.Half_Word_Slot);
 | |
| 				Dend_Size := Count_Effective_Slots(Dend);
 | |
| 			end if;
 | |
| 			
 | |
| 			-- Shift the divisor right by 1 slot
 | |
| 			pragma Assert (I = Sor_Size);
 | |
| 			Sor_Size := Sor_Size - 1;
 | |
| 			Sor.Half_Word_Slot(1 .. Sor_Size) := Sor.Half_Word_Slot(2 .. I);
 | |
| 			Sor.Half_Word_Slot(I) := 0;
 | |
| 		end loop;
 | |
| 		
 | |
| 		Q := Quo;
 | |
| 		R := Dend;
 | |
| 	end Divide_Unsigned_2;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	procedure Add (Interp: in out Interpreter_Record;
 | |
| 	               X:      in     Object_Pointer;
 | |
| 	               Y:      in     Object_Pointer;
 | |
| 	               Z:      out    Object_Pointer) is
 | |
| 		A: Object_Pointer := X;
 | |
| 		B: Object_Pointer := Y;
 | |
| 		Sign: Object_Sign;
 | |
| 	begin
 | |
| 		Add_Integers (Interp, A, B, Z);
 | |
| 		if Z = null then
 | |
| 			if A.Sign /= B.Sign then
 | |
| 				if A.Sign = Negative_Sign then
 | |
| 					Subtract (Interp, B, A, Z);
 | |
| 				else
 | |
| 					Subtract (Interp, A, B, Z);
 | |
| 				end if;
 | |
| 			else
 | |
| 				Sign := A.Sign;
 | |
| 				Z := Add_Unsigned (Interp.Self, A, B);
 | |
| 				Z.Sign := Sign;
 | |
| 			end if;
 | |
| 			Z := Normalize(Interp.Self, Z);
 | |
| 		end if;
 | |
| 	end Add;
 | |
| 
 | |
| 	procedure Subtract (Interp: in out Interpreter_Record;
 | |
| 	                    X:      in     Object_Pointer;
 | |
| 	                    Y:      in     Object_Pointer;
 | |
| 	                    Z:      out    Object_Pointer) is
 | |
| 		A: Object_Pointer := X;
 | |
| 		B: Object_Pointer := Y;
 | |
| 		Sign: Object_Sign;
 | |
| 	begin
 | |
| 		Subtract_Integers (Interp, A, B, Z);
 | |
| 		if Z = null then
 | |
| 			if A.Sign /= B.Sign then
 | |
| 				Sign := A.Sign;
 | |
| 				Z := Add_Unsigned(Interp.Self, A, B);
 | |
| 				Z.Sign := Sign;
 | |
| 			else
 | |
| 				if Is_Less_Unsigned(A, B) then
 | |
| 					Sign := Object_Sign'Val(Object_Bit(Object_Sign'Pos(A.Sign)) + 1); -- opposite A.Sign
 | |
| 					Z := Subtract_Unsigned(Interp.Self, B, A);
 | |
| 					Z.Sign := Sign;
 | |
| 				else
 | |
| 					Sign := A.Sign;
 | |
| 					Z := Subtract_Unsigned(Interp.Self, A, B);
 | |
| 					Z.Sign := Sign;
 | |
| 				end if;
 | |
| 			end if;
 | |
| 			Z := Normalize(Interp.Self, Z);
 | |
| 		end if;
 | |
| 	end Subtract;
 | |
| 
 | |
| 	procedure Multiply (Interp: in out Interpreter_Record;
 | |
| 	                    X:      in     Object_Pointer;
 | |
| 	                    Y:      in     Object_Pointer;
 | |
| 	                    Z:      out    Object_Pointer) is
 | |
| 		A: Object_Pointer := X;
 | |
| 		B: Object_Pointer := Y;
 | |
| 		Sign: Object_Sign;
 | |
| 	begin
 | |
| 		Multiply_Integers (Interp, A, B, Z);
 | |
| 		if Z = null then
 | |
| 			-- Determine the sign earlier than any object allocation
 | |
| 			-- to avoid GC side-effects because A and B are not pushed
 | |
| 			-- as temporarry object pointers.
 | |
| 			if A.Sign = B.Sign then
 | |
| 				Sign := Positive_Sign;
 | |
| 			else
 | |
| 				Sign := Negative_Sign;
 | |
| 			end if;
 | |
| 			Z := Multiply_Unsigned (Interp.Self, A, B);
 | |
| 			Z.Sign := Sign;
 | |
| 			Z := Normalize(Interp.Self, Z);
 | |
| 		end if;
 | |
| 	end Multiply;
 | |
| 
 | |
| 	procedure Divide (Interp: in out Interpreter_Record;
 | |
| 	                  X:      in     Object_Pointer;
 | |
| 	                  Y:      in     Object_Pointer;
 | |
| 	                  Q:      out    Object_Pointer;
 | |
| 	                  R:      out    Object_Pointer) is
 | |
| 		A: Object_Pointer := X;
 | |
| 		B: Object_Pointer := Y;
 | |
| 		C: aliased Object_Pointer;
 | |
| 		D: aliased Object_Pointer;
 | |
| 		Sign: Object_Sign;
 | |
| 	begin
 | |
| 		if (Is_Integer(Y) and then Pointer_To_Integer(Y) = 0) or else
 | |
| 		   (Is_Bigint(Y) and then Is_Zero(Y)) then
 | |
| 			raise Divide_By_Zero_Error;
 | |
| 		end if;
 | |
| 
 | |
| 		Divide_Integers (Interp, A, B, Q);
 | |
| 		if Q /= null then
 | |
| 			-- Remainder operation must succeed if division was ok.
 | |
| 			R :=  Integer_To_Pointer(Pointer_To_Integer(A) rem Pointer_To_Integer(B));
 | |
| 			return;
 | |
| 		end if;
 | |
| 
 | |
| 		if Is_Equal(A, B) then
 | |
| 			Q := Integer_To_Pointer(1);
 | |
| 			R := Integer_To_Pointer(0);
 | |
| 			return;
 | |
| 		elsif Is_Less_Unsigned(A, B) then
 | |
| 			Q := Integer_To_Pointer(0);
 | |
| 			R := A;
 | |
| 			return;
 | |
| 		end if;
 | |
| 
 | |
| 		-- Determine the sign earlier than any object allocation
 | |
| 		-- to avoid GC side-effects because A and B are not pushed
 | |
| 		-- as temporarry object pointers.
 | |
| 		if A.Sign = B.Sign then
 | |
| 			Sign := Positive_Sign;
 | |
| 		else
 | |
| 			Sign := Negative_Sign;
 | |
| 		end if;
 | |
| 
 | |
| 		Divide_Unsigned (Interp, A, B, C, D);
 | |
| 
 | |
| 		C.Sign := Sign;
 | |
| 		D.Sign := Sign;
 | |
| 
 | |
| 		Push_Top (Interp, C'Unchecked_Access);
 | |
| 		Push_Top (Interp, D'Unchecked_Access);
 | |
| 		C := Normalize(Interp.Self, C);
 | |
| 		D := Normalize(Interp.Self, D);
 | |
| 		Pop_Tops (Interp, 2);
 | |
| 
 | |
| 		Q := C;
 | |
| 		R := D;
 | |
| 	end Divide;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Compare_Bigint_And_Bigint (Interp: access Interpreter_Record;
 | |
| 	                                    X:      in     Object_Pointer;
 | |
| 	                                    Y:      in     Object_Pointer) return Standard.Integer is
 | |
| 	begin
 | |
| 		if Is_Equal(X, Y) then
 | |
| 			return 0;
 | |
| 		elsif Is_Less(X, Y) then
 | |
| 			return -1;
 | |
| 		else
 | |
| 			return 1;
 | |
| 		end if;
 | |
| 	end Compare_Bigint_And_Bigint;
 | |
| 
 | |
| 	function Compare_Bigint_And_Integer (Interp: access Interpreter_Record;
 | |
| 	                                     X:      in     Object_Pointer;
 | |
| 	                                     Y:      in     Object_Pointer) return Standard.Integer is
 | |
| 		YW: Object_Word := Object_Word(Pointer_To_Integer(Y));
 | |
| 		Size: Object_Size;
 | |
| 	begin
 | |
| 		if YW > Object_Word(Object_Half_Word'Last) then
 | |
| 			Size := 2;
 | |
| 		else
 | |
| 			Size := 1;
 | |
| 		end if;
 | |
| 
 | |
| 		declare
 | |
| 			YY: aliased Object_Record (Kind => Half_Word_Object, Size => Size);
 | |
| 		begin
 | |
| 			YY.Tag := Bigint_Object;
 | |
| 			YY.Half_Word_Slot(1) := Get_Low(YW);
 | |
| 			if YY.Size >= 2 then
 | |
| 				YY.Half_Word_Slot(2) := Get_High(YW);
 | |
| 			end if;
 | |
| 			return Compare_Bigint_And_Bigint (Interp, X, YY'Unchecked_Access);
 | |
| 		end;
 | |
| 	end Compare_Bigint_And_Integer;
 | |
| 
 | |
| 	function Compare (Interp: access Interpreter_Record;
 | |
| 	                  X:      in     Object_Pointer;
 | |
| 	                  Y:      in     Object_Pointer) return Standard.Integer is
 | |
| 	begin
 | |
| 		if Is_Bigint(X) then
 | |
| 			if Is_Bigint(Y) then
 | |
| 				return Compare_Bigint_And_Bigint (Interp, X, Y);
 | |
| 			else
 | |
| 				return Compare_Bigint_And_Integer (Interp, X, Y);
 | |
| 			end if;
 | |
| 		else
 | |
| 			if Is_Bigint(Y) then
 | |
| 				return -Compare_Bigint_And_Integer (Interp, Y, X);
 | |
| 			else
 | |
| 				if Pointer_To_Integer(X) = Pointer_To_Integer(Y) then
 | |
| 					return 0;
 | |
| 				elsif Pointer_To_Integer(X) < Pointer_To_Integer(Y) then
 | |
| 					return -1;
 | |
| 				else
 | |
| 					return 1;
 | |
| 				end if;
 | |
| 			end if;
 | |
| 		end if;
 | |
| 	end Compare;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function To_String (Interp: access Interpreter_Record;
 | |
| 	                    X:      in     Object_Pointer;
 | |
| 	                    Radix:  in     Object_Radix) return Object_Pointer is
 | |
| 		W: aliased Object_Word;
 | |
| 		Sign: aliased Object_Sign;
 | |
| 	begin
 | |
| 		-- Perform simple conversion if the object can be decoded 
 | |
| 		-- to a single word.
 | |
| 		if Decode_To_Word(X, W'Access, Sign'Access) then
 | |
| 			declare
 | |
| 				-- Use a static buffer for simple conversion as the largest
 | |
| 				-- size is known. The largest buffer is required for radix 2.
 | |
| 				-- For a binary conversion(radix 2), the number of bits is
 | |
| 				-- the maximum number of digits that can be produced. +1 is
 | |
| 				-- needed for the sign.
 | |
| 				Buf: Object_Character_Array (1 .. Object_Word'Size + 1);
 | |
| 				Len: Object_Size;
 | |
| 			begin
 | |
| 				Convert_Word_To_Text (W, Radix, Buf, Len);
 | |
| 				if Sign = Negative_Sign then
 | |
| 					Len := Len + 1;
 | |
| 					Buf(Len) := Ch_Val.Minus_Sign;
 | |
| 				end if;
 | |
| 				return Make_String(Interp, Source => Buf(1 .. Len), Invert => Standard.True);
 | |
| 			end;
 | |
| 		end if;
 | |
| 		
 | |
| 		-- Otherwise, do it in a hard way.
 | |
| 		declare
 | |
| 			B: aliased Object_Record (Kind => Half_Word_Object, Size => 2);
 | |
| 			A: aliased Object_Pointer;
 | |
| 			R: aliased Object_Pointer;
 | |
| 			Q: aliased Object_Pointer;
 | |
| 			Z: Object_Pointer;
 | |
| 
 | |
| 			-- TODO: optimize the buffer size depending on the radix value.
 | |
| 			subtype Static_Buffer is Object_Character_Array (1 .. 16 * Half_Word_Bits + 1);
 | |
| 			subtype Dynamic_Buffer is Object_Character_Array (1 .. X.Size  * Half_Word_Bits + 1);
 | |
| 			type Static_Buffer_Pointer is access all Static_Buffer;
 | |
| 			type Dynamic_Buffer_Pointer is access all Dynamic_Buffer;
 | |
| 			package Pool is new H2.Pool (Dynamic_Buffer, Dynamic_Buffer_Pointer, Interp.Storage_Pool);
 | |
| 			Static_Buf: aliased Static_Buffer;
 | |
| 			Dynamic_Buf: Dynamic_Buffer_Pointer;
 | |
| 			Buf: Thin_Object_Character_Array_Pointer;
 | |
| 			
 | |
| 			Totlen: Object_Size := 0; -- Length of total conversion
 | |
| 			Seglen: Object_Size; -- Length of each word conversion
 | |
| 			AS: Half_Word_Object_Size;
 | |
| 			
 | |
| 			-- BD is the largest multiple of Radix that is less than or 
 | |
| 			-- equal to Object_Word'Last.
 | |
| 			--BD: constant Block_Divisor_Record := Get_Block_Divisor(Radix);
 | |
| 			BD: Block_Divisor_Record renames Block_Divisors(Radix);
 | |
| 		begin
 | |
| 			if X.Size <= 16 then
 | |
| 				declare
 | |
| 					function Conv is new Ada.Unchecked_Conversion (Static_Buffer_Pointer, Thin_Object_Character_Array_Pointer);
 | |
| 				begin
 | |
| 					Buf := Conv(Static_Buf'Access);
 | |
| 				end;
 | |
| 			else
 | |
| 			-- TODO: move this dynamic buffer to Interpreter_Record and let it sustained during the lifetime of Interpreer
 | |
| 				declare
 | |
| 					function Conv is new Ada.Unchecked_Conversion (Dynamic_Buffer_Pointer, Thin_Object_Character_Array_Pointer);
 | |
| 				begin
 | |
| 					Dynamic_Buf := Pool.Allocate;
 | |
| 					Buf := Conv(Dynamic_Buf);
 | |
| 				end;
 | |
| 			end if;
 | |
| 
 | |
| 			-- Create a block divisor object.
 | |
| 			B.Tag := Bigint_Object;
 | |
| 			B.Half_Word_Slot := (1 => BD.Low, 2 => BD.High);
 | |
| 
 | |
| 			Push_Top (Interp.all, Q'Unchecked_Access);
 | |
| 			Push_Top (Interp.all, R'Unchecked_Access);
 | |
| 			Push_Top (Interp.all, A'Unchecked_Access);
 | |
| 			
 | |
| 			-- Clone the value to convert
 | |
| 			A := Copy_Upto(Interp, X, X.Size);
 | |
| 
 | |
| 			-- Remember the sign to produce the sign symbol later
 | |
| 			Sign := A.Sign;
 | |
| 			A.Sign := Positive_Sign;
 | |
| 			AS := A.Size;
 | |
| 
 | |
| 			Q := Make_Bigint(Interp, Size => A.Size);
 | |
| 			R := Make_Bigint(Interp, Size => A.Size);
 | |
| 
 | |
| 			loop
 | |
| 				-- Get a word block to convert
 | |
| 				if Is_Less_Unsigned_Array (B.Half_Word_Slot, B.Size, A.Half_Word_Slot, AS) then
 | |
| 					Divide_Unsigned_Array (A.Half_Word_Slot, AS, B.Half_Word_Slot, B.Size, Q.Half_Word_Slot, R.Half_Word_Slot);
 | |
| 					A.Half_Word_Slot := Q.Half_Word_Slot;
 | |
| 					AS := Count_Effective_Slots(A);
 | |
| 				else
 | |
| 					R := A; -- The last block
 | |
| 				end if;
 | |
| 
 | |
| 				-- Translate up to 2 half-words to a full word.
 | |
| 				if R.Size = 1 then
 | |
| 					W := Object_Word(R.Half_Word_Slot(1));
 | |
| 				else
 | |
| 					W := Make_Word(R.Half_Word_Slot(1), R.Half_Word_Slot(2));
 | |
| 				end if;
 | |
| 				Convert_Word_To_Text (W, Radix, Buf(Totlen + 1 .. Buf'Last), Seglen);
 | |
| 				Totlen := Totlen + Seglen;
 | |
| 
 | |
| 				exit when R = A; -- Reached the last block
 | |
| 
 | |
| 				-- Fill unfilled leading digits with zeros if it's not the last block
 | |
| 				--for I in Seglen + 1 .. Block_Divisors(Radix).Length loop
 | |
| 				for I in Seglen + 1 .. BD.Length loop
 | |
| 					Totlen := Totlen + 1;
 | |
| 					Buf(Totlen) := Object_Character'Val(Object_Character'Pos(Ch_Val.Zero));
 | |
| 				end loop;
 | |
| 			end loop;
 | |
| 
 | |
| 			Pop_Tops (Interp.all, 3);
 | |
| 			
 | |
| 			if Sign = Negative_Sign then
 | |
| 				Totlen := Totlen + 1;
 | |
| 				Buf(Totlen) := Ch_Val.Minus_Sign;
 | |
| 			end if;
 | |
| 			
 | |
| 			Z := Make_String(Interp.Self, Source => Buf(1 .. Totlen), Invert => Standard.True);
 | |
| 
 | |
| 			-- TODO: Move dynamic_buf to interpreter_Record.
 | |
| 			if Dynamic_Buf /= null then
 | |
| 				Pool.Deallocate (Dynamic_Buf);
 | |
| 			end if;
 | |
| 
 | |
| 			return Z;
 | |
| 
 | |
| 		exception
 | |
| 			when others =>
 | |
| 				if Dynamic_Buf /= null then
 | |
| 					Pool.Deallocate (Dynamic_Buf);
 | |
| 				end if;
 | |
| 				raise;
 | |
| 		end;
 | |
| 	end To_String;
 | |
| 	
 | |
| 	
 | |
| 	function From_String (Interp: access Interpreter_Record;
 | |
| 	                      X:      in     Object_Character_Array;
 | |
| 	                      Radix:  in     Object_Radix) return Object_Pointer is
 | |
| 	        
 | |
| 
 | |
| 		function Get_Digit_Value (C: in Object_Character) return Object_Integer is
 | |
| 			Pos: Object_Integer;
 | |
| 		begin
 | |
| 			Pos := Object_Character'Pos(C);
 | |
| 			case Pos is
 | |
| 				when Ch_Code.Zero .. Ch_Code.Nine =>
 | |
| 					Pos := Pos - Ch_Code.Zero;
 | |
| 
 | |
| 				when Ch_Code.LC_A .. Ch_Code.LC_Z =>
 | |
| 					Pos := Pos - Ch_Code.LC_A + 10;
 | |
| 
 | |
| 				when Ch_Code.UC_A .. Ch_Code.UC_Z =>
 | |
| 					Pos := Pos - Ch_Code.UC_A + 10;
 | |
| 
 | |
| 				when others =>
 | |
| 					Pos := -1;
 | |
| 			end case;
 | |
| 
 | |
| 			if Pos not in 0 .. Object_Integer(Radix) - 1 then
 | |
| 				raise Numeric_String_Error;
 | |
| 			end if;
 | |
| 
 | |
| 			return Pos;
 | |
| 		end Get_Digit_Value;
 | |
| 
 | |
| 		Sign: Object_Sign;
 | |
| 		Idx: Object_Size;
 | |
| 		W: Object_Word;
 | |
| 		BDLen: Object_Size renames Block_Divisors(Radix).Length;
 | |
| 		NDigits: Object_Size;
 | |
| 		B: Object_Pointer;
 | |
| 	begin
 | |
| 		-- Find the first digit while remembering the sign
 | |
| 		Sign := Positive_Sign;
 | |
| 		Idx := X'First;
 | |
| 		if Idx <= X'Last then
 | |
| 			if X(Idx) = Ch_Val.Plus_Sign then
 | |
| 				Idx := Idx + 1;
 | |
| 			elsif X(Idx) = Ch_Val.Minus_Sign then
 | |
| 				Idx := Idx + 1;
 | |
| 				Sign := Negative_Sign;
 | |
| 			end if;
 | |
| 		end if;
 | |
| 
 | |
| 		pragma Assert (Idx <= X'Last); -- the caller ensure at least 1 digit
 | |
| 		if Idx > X'Last then
 | |
| 			-- No digits in the string.
 | |
| 			--return Integer_To_Pointer(0);
 | |
| 			raise Numeric_String_Error;
 | |
| 		end if;
 | |
| 		
 | |
| 		-- Find the first non-zero digit
 | |
| 		while Idx <= X'Last loop
 | |
| 			exit when X(Idx) /= Ch_Val.Zero;
 | |
| 			Idx := Idx + 1;
 | |
| 		end loop;
 | |
| 		if Idx > X'Last then
 | |
| 			-- All digits are zeros.
 | |
| 			return Integer_To_Pointer(0);
 | |
| 		end if;
 | |
| 
 | |
| 		NDigits := X'Last - Idx + 1; -- number of effective digits
 | |
| 
 | |
| 		-- Attempt to perform conversion within the range of Object_Integer.
 | |
| 		declare
 | |
| 			--pragma Unsuppress (Range_Check);
 | |
| 			--pragma Unsuppress (Overflow_Check);
 | |
| 
 | |
| 			V1, V2: Object_Word;
 | |
| 			I: Object_Integer;
 | |
| 		begin
 | |
| 			W := 0;
 | |
| 			while Idx <= X'Last loop
 | |
| 				V1 := W * Radix;
 | |
| 				if V1 / Radix /= W then
 | |
| 					-- Overflow
 | |
| 					goto Huge;
 | |
| 				end if;
 | |
| 
 | |
| 				V2 := V1 + Object_Word(Get_Digit_Value(X(Idx)));
 | |
| 				if V2 > Object_Word(Object_Integer'Last) or else V2 < V1 then
 | |
| 					-- Overflow
 | |
| 					goto Huge;
 | |
| 				end if;
 | |
| 
 | |
| 				W := V2;
 | |
| 				Idx := Idx + 1;
 | |
| 			end loop;
 | |
| 			-- Processed all digits. The value can fit
 | |
| 			-- into an Object_Integer.
 | |
| 			I := Object_Integer(W);
 | |
| 
 | |
| 			--I := 0;
 | |
| 			--while Idx <= X'Last loop
 | |
| 			--	begin
 | |
| 			--		I := I * Object_Integer(Radix) + Get_Digit_Value(X(Idx));
 | |
| 			--	exception
 | |
| 			--		when Constraint_Error =>
 | |
| 			--			W := Object_Word(I);
 | |
| 			--			goto Huge;
 | |
| 			--	end;
 | |
| 			--	Idx := Idx + 1;
 | |
| 			--end loop;
 | |
| 
 | |
| 			if Sign = Negative_Sign then
 | |
| 				I := -I;
 | |
| 			end if;
 | |
| 			return Integer_To_Pointer(I);
 | |
| 		end;
 | |
| 
 | |
| 	<<Huge>>
 | |
| 		-- TODO: Optimizations if Radix 2, 4, 16. For there radix, conversion can be done in chunk.
 | |
| 
 | |
| 		-- The input string is too large to be converted to an Object_Integer.
 | |
| 		B := Make_Bigint(Interp, Size => ((NDigits + BDLen - 1) / BDLen) * 2 + 1); -- TODO: is it the right size?
 | |
| 
 | |
| 		declare
 | |
| 			C: Object_Pointer;
 | |
| 			RB: aliased Object_Record (Kind => Half_Word_Object, Size => 1);
 | |
| 		begin
 | |
| 			RB.Tag := Bigint_Object;
 | |
| 			RB.Half_Word_Slot(1) := Object_Half_Word(Radix);
 | |
| 
 | |
| 			C := Make_Bigint(Interp, Size => B.Size);
 | |
| 
 | |
| 			B.Half_Word_Slot(1) := Get_Low(W);
 | |
| 			B.Half_Word_Slot(2) := Get_High(W);
 | |
| 
 | |
| 			while Idx <= X'Last loop
 | |
| 				declare
 | |
| 					DVB: aliased Object_Record (Kind => Half_Word_Object, Size => 1);
 | |
| 				begin
 | |
| 					DVB.Tag := Bigint_Object;
 | |
| 					DVB.Half_Word_Slot(1) := Object_Half_Word(Get_Digit_Value(X(Idx)));
 | |
| 
 | |
| 					Multiply_Unsigned_Array (B.Half_Word_Slot, Count_Effective_Array_Slots(B.Half_Word_Slot, B.Size), RB.Half_Word_Slot, RB.Size, C.Half_Word_Slot);
 | |
| 					B.Half_Word_Slot := (others => 0);
 | |
| 					Add_Unsigned_Array (C.Half_Word_Slot, Count_Effective_Array_Slots(C.Half_Word_Slot, B.Size), DVB.Half_Word_Slot, DVB.Size, B.Half_Word_Slot);
 | |
| 					C.Half_Word_Slot := (others => 0);
 | |
| 				end;
 | |
| 
 | |
| 				Idx := Idx + 1;
 | |
| 			end loop;
 | |
| 		end;
 | |
| 
 | |
| 		B.Sign := Sign;
 | |
| 		return Normalize(Interp.Self, B);
 | |
| 	end From_String;
 | |
| 
 | |
| 	-------------------------------------------------------------------------
 | |
| 
 | |
| 	function Get_Block_Divisor (Radix: in Object_Radix) return Block_Divisor_Record is
 | |
| 		V, W: Object_Word;
 | |
| 		Len: Object_Size;
 | |
| 	begin
 | |
| 		-- Get the largest multiples of Radix that can be represented
 | |
| 		-- in a single Object_Word.
 | |
| 
 | |
| 		Len := 1;
 | |
| 		W := Object_Word(Radix);
 | |
| 
 | |
| 		loop
 | |
| 			V := W * Object_Word(Radix);
 | |
| 			exit when V / Object_Word(Radix) /= W; -- Overflow
 | |
| 			Len := Len + 1;
 | |
| 			W := V;
 | |
| 		end loop;
 | |
| 
 | |
| 		return (Low => Get_Low(W), High => Get_High(W), Length => Len);
 | |
| 	end Get_Block_Divisor;
 | |
| 
 | |
| 	procedure Initialize is
 | |
| 	begin
 | |
| 		-- Initialize block divisors table
 | |
| 		if not Block_Divisors_Initialized then
 | |
| 			for Radix in Object_Radix'Range loop
 | |
| 				Block_Divisors(Radix) := Get_Block_Divisor(Radix);
 | |
| 			end loop;
 | |
| 			Block_Divisors_Initialized := Standard.True;
 | |
| 		end if;
 | |
| 	end Initialize;
 | |
| 
 | |
| begin
 | |
| 	Initialize;
 | |
| end Bigint;
 |